#include <algorithm> #include <array> #include <cstdint> #include <cstdio> #include <cstdlib> #include <cstring> #include <exception> #include <functional> #include <limits> #include <memory> #include <optional> #include <string> #include <string_view> #include <tuple> #include <type_traits> #include <variant> #include <vector> #define SSP_DISABLE_FAST_FLOAT namespace ss { //////////////// // tup merge/cat //////////////// template <typename T, typename Ts> struct tup_cat; template <typename... Ts, typename... Us> struct tup_cat<std::tuple<Ts...>, std::tuple<Us...>> { using type = std::tuple<Ts..., Us...>; }; template <typename T, typename... Ts> struct tup_cat<T, std::tuple<Ts...>> { using type = std::tuple<T, Ts...>; }; template <typename... Ts> using tup_cat_t = typename tup_cat<Ts...>::type; //////////////// // tup first/head //////////////// template <size_t N, typename T, typename... Ts> struct left_of_impl; template <size_t N, typename T, typename... Ts> struct left_of_impl { static_assert(N < 128, "recursion limit reached"); static_assert(N != 0, "cannot take the whole tuple"); using type = tup_cat_t<T, typename left_of_impl<N - 1, Ts...>::type>; }; template <typename T, typename... Ts> struct left_of_impl<0, T, Ts...> { using type = std::tuple<T>; }; template <size_t N, typename... Ts> using left_of_t = typename left_of_impl<N, Ts...>::type; template <typename... Ts> using first_t = typename left_of_impl<sizeof...(Ts) - 2, Ts...>::type; template <typename... Ts> using head_t = typename left_of_impl<0, Ts...>::type; //////////////// // tup tail/last //////////////// template <size_t N, typename T, typename... Ts> struct right_of_impl; template <size_t N, typename T, typename... Ts> struct right_of_impl { using type = typename right_of_impl<N - 1, Ts...>::type; }; template <typename T, typename... Ts> struct right_of_impl<0, T, Ts...> { using type = std::tuple<T, Ts...>; }; template <size_t N, typename... Ts> using right_of_t = typename right_of_impl<N, Ts...>::type; template <typename... Ts> using tail_t = typename right_of_impl<1, Ts...>::type; template <typename... Ts> using last_t = typename right_of_impl<sizeof...(Ts) - 1, Ts...>::type; //////////////// // apply trait //////////////// template <template <typename...> class Trait, typename T> struct apply_trait; template <template <typename...> class Trait, typename T, typename... Ts> struct apply_trait<Trait, std::tuple<T, Ts...>> { using type = tup_cat_t<typename Trait<T>::type, typename apply_trait<Trait, std::tuple<Ts...>>::type>; }; template <template <typename...> class Trait, typename T> struct apply_trait { using type = std::tuple<typename Trait<T>::type>; }; template <template <typename...> class Trait, typename T> struct apply_trait<Trait, std::tuple<T>> { using type = std::tuple<typename Trait<T>::type>; }; template <template <typename...> class Trait, typename... Ts> using apply_trait_t = typename apply_trait<Trait, Ts...>::type; //////////////// // apply optional trait //////////////// // type is T if true, and std::false_type othervise template <typename T, typename U> struct optional_trait; template <typename U> struct optional_trait<std::true_type, U> { using type = U; }; template <typename U> struct optional_trait<std::false_type, U> { using type = std::false_type; }; template <template <typename...> class Trait, typename T> struct apply_optional_trait; template <template <typename...> class Trait, typename T, typename... Ts> struct apply_optional_trait<Trait, std::tuple<T, Ts...>> { using type = tup_cat_t< typename optional_trait<typename Trait<T>::type, T>::type, typename apply_optional_trait<Trait, std::tuple<Ts...>>::type>; }; template <template <typename...> class Trait, typename T> struct apply_optional_trait { using type = std::tuple<typename optional_trait<typename Trait<T>::type, T>::type>; }; template <template <typename...> class Trait, typename T> struct apply_optional_trait<Trait, std::tuple<T>> { using type = std::tuple<typename optional_trait<typename Trait<T>::type, T>::type>; }; template <template <typename...> class Trait, typename... Ts> using apply_trait_optional_t = apply_optional_trait<Trait, Ts...>; //////////////// // filter false_type //////////////// template <typename T, typename... Ts> struct remove_false { using type = tup_cat_t<T, typename remove_false<Ts...>::type>; }; template <typename... Ts> struct remove_false<std::false_type, Ts...> { using type = typename remove_false<Ts...>::type; }; template <typename T, typename... Ts> struct remove_false<std::tuple<T, Ts...>> { using type = tup_cat_t<T, typename remove_false<Ts...>::type>; }; template <typename... Ts> struct remove_false<std::tuple<std::false_type, Ts...>> { using type = typename remove_false<Ts...>::type; }; template <typename T> struct remove_false<T> { using type = std::tuple<T>; }; template <typename T> struct remove_false<std::tuple<T>> { using type = std::tuple<T>; }; template <> struct remove_false<std::false_type> { using type = std::tuple<>; }; //////////////// // negate trait //////////////// template <template <typename...> class Trait> struct negate_impl { template <typename... Ts> using type = std::integral_constant<bool, !Trait<Ts...>::value>; }; template <template <typename...> class Trait> using negate_impl_t = typename negate_impl<Trait>::type; //////////////// // filter by trait //////////////// template <template <typename...> class Trait, typename... Ts> struct filter_if { using type = typename filter_if<Trait, std::tuple<Ts...>>::type; }; template <template <typename...> class Trait, typename... Ts> struct filter_if<Trait, std::tuple<Ts...>> { using type = typename remove_false< typename apply_optional_trait<Trait, std::tuple<Ts...>>::type>::type; }; template <template <typename...> class Trait, typename... Ts> using filter_if_t = typename filter_if<Trait, Ts...>::type; template <template <typename...> class Trait, typename... Ts> struct filter_not { using type = typename filter_not<Trait, std::tuple<Ts...>>::type; }; template <template <typename...> class Trait, typename... Ts> struct filter_not<Trait, std::tuple<Ts...>> { using type = typename remove_false<typename apply_optional_trait< negate_impl<Trait>::template type, std::tuple<Ts...>>::type>::type; }; template <template <typename...> class Trait, typename... Ts> using filter_not_t = typename filter_not<Trait, Ts...>::type; //////////////// // count //////////////// template <template <typename...> class Trait, typename... Ts> struct count; template <template <typename...> class Trait, typename T, typename... Ts> struct count<Trait, T, Ts...> { static constexpr size_t value = std::tuple_size<filter_if_t<Trait, T, Ts...>>::value; }; template <template <typename...> class Trait, typename T> struct count<Trait, T> { static constexpr size_t value = Trait<T>::value; }; template <template <typename...> class Trait> struct count<Trait> { static constexpr size_t value = 0; }; template <template <typename...> class Trait, typename... Ts> constexpr size_t count_v = count<Trait, Ts...>::value; //////////////// // count not //////////////// template <template <typename...> class Trait, typename... Ts> struct count_not; template <template <typename...> class Trait, typename T, typename... Ts> struct count_not<Trait, T, Ts...> { static constexpr size_t value = std::tuple_size<filter_not_t<Trait, T, Ts...>>::value; }; template <template <typename...> class Trait, typename T> struct count_not<Trait, T> { static constexpr size_t value = !Trait<T>::value; }; template <template <typename...> class Trait> struct count_not<Trait> { static constexpr size_t value = 0; }; template <template <typename...> class Trait, typename... Ts> constexpr size_t count_not_v = count_not<Trait, Ts...>::value; //////////////// // all of //////////////// template <template <typename...> class Trait, typename... Ts> struct all_of { static constexpr bool value = count_v<Trait, Ts...> == sizeof...(Ts); }; template <template <typename...> class Trait, typename... Ts> struct all_of<Trait, std::tuple<Ts...>> { static constexpr bool value = count_v<Trait, Ts...> == sizeof...(Ts); }; template <template <typename...> class Trait, typename... Ts> constexpr bool all_of_v = all_of<Trait, Ts...>::value; //////////////// // any of //////////////// template <template <typename...> class Trait, typename... Ts> struct any_of { static_assert(sizeof...(Ts) > 0); static constexpr bool value = count_v<Trait, Ts...> > 0; }; template <template <typename...> class Trait, typename... Ts> struct any_of<Trait, std::tuple<Ts...>> { static_assert(sizeof...(Ts) > 0); static constexpr bool value = count_v<Trait, Ts...> > 0; }; template <template <typename...> class Trait, typename... Ts> constexpr bool any_of_v = any_of<Trait, Ts...>::value; //////////////// // none of //////////////// template <template <typename...> class Trait, typename... Ts> struct none_of { static constexpr bool value = count_v<Trait, Ts...> == 0; }; template <template <typename...> class Trait, typename... Ts> struct none_of<Trait, std::tuple<Ts...>> { static constexpr bool value = count_v<Trait, Ts...> == 0; }; template <template <typename...> class Trait, typename... Ts> constexpr bool none_of_v = none_of<Trait, Ts...>::value; //////////////// // is instance of //////////////// template <template <typename...> class Template, typename T> struct is_instance_of { constexpr static bool value = false; }; template <template <typename...> class Template, typename... Ts> struct is_instance_of<Template, Template<Ts...>> { constexpr static bool value = true; }; template <template <typename...> class Template, typename... Ts> constexpr bool is_instance_of_v = is_instance_of<Template, Ts...>::value; //////////////// // tuple to struct //////////////// template <class T, std::size_t... Is, class U> T to_object_impl(std::index_sequence<Is...>, U&& data) { return {std::get<Is>(std::forward<U>(data))...}; } template <class T, class U> T to_object(U&& data) { using NoRefU = std::decay_t<U>; if constexpr (is_instance_of_v<std::tuple, NoRefU>) { return to_object_impl< T>(std::make_index_sequence<std::tuple_size<NoRefU>{}>{}, std::forward<U>(data)); } else { return T{std::forward<U>(data)}; } } } /* trait */ namespace ss { //////////////// // exception //////////////// class exception : public std::exception { std::string msg_; public: exception(const std::string& msg): msg_{msg} { } virtual char const* what() const noexcept { return msg_.c_str(); } }; } /* ss */ namespace ss { //////////////// // function traits //////////////// template <size_t N, typename T, typename... Ts> struct decayed_arg_n { static_assert(N - 1 != sizeof...(Ts), "index out of range"); using type = typename decayed_arg_n<N - 1, Ts...>::type; }; template <typename T, typename... Ts> struct decayed_arg_n<0, T, Ts...> { using type = std::decay_t<T>; }; template <typename T> struct function_traits; template <typename R, typename C, typename Arg> struct function_traits<std::function<R(C&, const Arg&) const>> { using arg_type = Arg; }; template <typename R, typename... Ts> struct function_traits<R(Ts...)> { using arg0 = typename decayed_arg_n<0, Ts...>::type; }; template <typename R, typename... Ts> struct function_traits<R(Ts...) const> : function_traits<R(Ts...)> {}; template <typename R, typename... Ts> struct function_traits<R(Ts...)&> : function_traits<R(Ts...)> {}; template <typename R, typename... Ts> struct function_traits<R(Ts...) const&> : function_traits<R(Ts...)> {}; template <typename R, typename... Ts> struct function_traits<R(Ts...) &&> : function_traits<R(Ts...)> {}; template <typename R, typename... Ts> struct function_traits<R(Ts...) const&&> : function_traits<R(Ts...)> {}; template <typename MemberFunction> struct member_wrapper; template <typename R, typename T> struct member_wrapper<R T::*> { using arg_type = typename function_traits<R>::arg0; }; //////////////// // has method //////////////// #define INIT_HAS_METHOD(method) \ template <typename T> \ class has_m_##method { \ template <typename C> \ static std::true_type test(decltype(&C::method)); \ \ template <typename C> \ static std::false_type test(...); \ \ public: \ constexpr static bool value = decltype(test<T>(0))::value; \ }; \ \ template <typename T> \ constexpr bool has_m_##method##_t = has_m_##method<T>::value; } /* trait */ namespace ss { //////////////// // all except //////////////// template <typename T, auto... Values> struct ax { private: template <auto X, auto... Xs> bool ss_valid_impl(const T& x) const { if constexpr (sizeof...(Xs) != 0) { return x != X && ss_valid_impl<Xs...>(x); } return x != X; } public: bool ss_valid(const T& value) const { return ss_valid_impl<Values...>(value); } const char* error() const { return "value excluded"; } }; //////////////// // none except //////////////// template <typename T, auto... Values> struct nx { private: template <auto X, auto... Xs> bool ss_valid_impl(const T& x) const { if constexpr (sizeof...(Xs) != 0) { return x == X || ss_valid_impl<Xs...>(x); } return x == X; } public: bool ss_valid(const T& value) const { return ss_valid_impl<Values...>(value); } const char* error() const { return "value excluded"; } }; //////////////// // greater than or equal to // greater than // less than // less than or equal to //////////////// template <typename T, auto N> struct gt { bool ss_valid(const T& value) const { return value > N; } }; template <typename T, auto N> struct gte { bool ss_valid(const T& value) const { return value >= N; } }; template <typename T, auto N> struct lt { bool ss_valid(const T& value) const { return value < N; } }; template <typename T, auto N> struct lte { bool ss_valid(const T& value) const { return value <= N; } }; //////////////// // in range //////////////// template <typename T, auto Min, auto Max> struct ir { bool ss_valid(const T& value) const { return value >= Min && value <= Max; } }; //////////////// // out of range //////////////// template <typename T, auto Min, auto Max> struct oor { bool ss_valid(const T& value) const { return value < Min || value > Max; } }; //////////////// // non empty //////////////// template <typename T> struct ne { bool ss_valid(const T& value) const { return !value.empty(); } const char* error() const { return "empty field"; } }; } /* ss */ namespace ss { struct none {}; using string_range = std::pair<const char*, const char*>; using split_data = std::vector<string_range>; constexpr inline auto default_delimiter = ","; template <bool StringError> inline void assert_string_error_defined() { static_assert(StringError, "'string_error' needs to be enabled to use 'error_msg'"); } template <bool ThrowOnError> inline void assert_throw_on_error_not_defined() { static_assert(!ThrowOnError, "cannot handle errors manually if " "'throw_on_error' is enabled"); } #if __unix__ inline ssize_t get_line(char** lineptr, size_t* n, FILE* stream) { return getline(lineptr, n, stream); } #else using ssize_t = int64_t; inline ssize_t get_line(char** lineptr, size_t* n, FILE* stream) { size_t pos; int c; if (lineptr == nullptr || stream == nullptr || n == nullptr) { errno = EINVAL; return -1; } c = getc(stream); if (c == EOF) { return -1; } if (*lineptr == nullptr) { *lineptr = static_cast<char*>(malloc(128)); if (*lineptr == nullptr) { return -1; } *n = 128; } pos = 0; while (c != EOF) { if (pos + 1 >= *n) { size_t new_size = *n + (*n >> 2); if (new_size < 128) { new_size = 128; } char* new_ptr = static_cast<char*>( realloc(static_cast<void*>(*lineptr), new_size)); if (new_ptr == nullptr) { return -1; } *n = new_size; *lineptr = new_ptr; } (*lineptr)[pos++] = c; if (c == '\n') { break; } c = getc(stream); } (*lineptr)[pos] = '\0'; return pos; } #endif } /* ss */ namespace ss { //////////////// // matcher //////////////// template <char... Cs> struct matcher { private: template <char X, char... Xs> static bool match_impl(char c) { if constexpr (sizeof...(Xs) != 0) { return (c == X) || match_impl<Xs...>(c); } return (c == X); } constexpr static bool contains_string_terminator() { for (const auto& match : matches) { if (match == '\0') { return false; } } return true; } public: static bool match(char c) { return match_impl<Cs...>(c); } constexpr static bool enabled = true; constexpr static std::array<char, sizeof...(Cs)> matches{Cs...}; static_assert(contains_string_terminator(), "string terminator cannot be used as a match character"); }; template <typename FirstMatcher, typename SecondMatcher> inline constexpr bool matches_intersect() { for (const auto& first_match : FirstMatcher::matches) { for (const auto& second_match : SecondMatcher::matches) { if (first_match != '\0' && first_match == second_match) { return true; } } } return false; } template <typename FirstMatcher, typename SecondMatcher1, typename SecondMatcher2> inline constexpr bool matches_intersect_union() { return matches_intersect<FirstMatcher, SecondMatcher1>() || matches_intersect<FirstMatcher, SecondMatcher2>(); } template <> class matcher<'\0'> { public: constexpr static bool enabled = false; constexpr static std::array<char, 1> matches{'\0'}; static bool match(char c) = delete; }; //////////////// // setup //////////////// //////////////// // matcher //////////////// template <char C> struct quote : matcher<C> {}; template <char... Cs> struct trim : matcher<Cs...> {}; template <char... Cs> struct trim_left : matcher<Cs...> {}; template <char... Cs> struct trim_right : matcher<Cs...> {}; template <char... Cs> struct escape : matcher<Cs...> {}; template <typename T, template <char...> class Template> struct is_instance_of_matcher : std::false_type {}; template <char... Ts, template <char...> class Template> struct is_instance_of_matcher<Template<Ts...>, Template> : std::true_type {}; template <typename T, template <char...> class Template> using is_instance_of_matcher_t = typename is_instance_of_matcher<T, Template>::type; template <template <char...> class Matcher, typename... Ts> struct get_matcher; template <template <char...> class Matcher, typename T, typename... Ts> struct get_matcher<Matcher, T, Ts...> { template <typename U> struct is_matcher : is_instance_of_matcher<U, Matcher> {}; static_assert(count_v<is_matcher, T, Ts...> <= 1, "the same matcher cannot" "be defined multiple times"); using type = std::conditional_t<is_matcher<T>::value, T, typename get_matcher<Matcher, Ts...>::type>; }; template <template <char...> class Matcher> struct get_matcher<Matcher> { using type = Matcher<'\0'>; }; template <template <char...> class Matcher, typename... Ts> using get_matcher_t = typename get_matcher<Matcher, Ts...>::type; //////////////// // multiline //////////////// template <size_t S, bool B = true> struct multiline_restricted { constexpr static auto size = S; constexpr static auto enabled = B; }; using multiline = multiline_restricted<0>; template <typename T> struct is_instance_of_multiline : std::false_type {}; template <size_t S, bool B> struct is_instance_of_multiline<multiline_restricted<S, B>> : std::true_type {}; template <typename T> using is_instance_of_multiline_t = typename is_instance_of_multiline<T>::type; template <typename... Ts> struct get_multiline; template <typename T, typename... Ts> struct get_multiline<T, Ts...> { using type = std::conditional_t<is_instance_of_multiline<T>::value, T, typename get_multiline<Ts...>::type>; }; template <> struct get_multiline<> { using type = multiline_restricted<0, false>; }; template <typename... Ts> using get_multiline_t = typename get_multiline<Ts...>::type; //////////////// // string_error //////////////// class string_error; //////////////// // ignore_header //////////////// class ignore_header; //////////////// // ignore_empty //////////////// class ignore_empty; //////////////// // throw_on_error //////////////// class throw_on_error; //////////////// // setup implementation //////////////// template <typename... Options> struct setup { private: template <typename Option> struct is_matcher : std::disjunction<is_instance_of_matcher_t<Option, quote>, is_instance_of_matcher_t<Option, escape>, is_instance_of_matcher_t<Option, trim>, is_instance_of_matcher_t<Option, trim_left>, is_instance_of_matcher_t<Option, trim_right>> {}; template <typename T> struct is_string_error : std::is_same<T, string_error> {}; template <typename T> struct is_ignore_header : std::is_same<T, ignore_header> {}; template <typename T> struct is_ignore_empty : std::is_same<T, ignore_empty> {}; template <typename T> struct is_throw_on_error : std::is_same<T, throw_on_error> {}; constexpr static auto count_matcher = count_v<is_matcher, Options...>; constexpr static auto count_multiline = count_v<is_instance_of_multiline, Options...>; constexpr static auto count_string_error = count_v<is_string_error, Options...>; constexpr static auto count_ignore_header = count_v<is_ignore_header, Options...>; constexpr static auto count_throw_on_error = count_v<is_throw_on_error, Options...>; constexpr static auto count_ignore_empty = count_v<is_ignore_empty, Options...>; constexpr static auto number_of_valid_setup_types = count_matcher + count_multiline + count_string_error + count_ignore_header + count_ignore_empty + count_throw_on_error; using trim_left_only = get_matcher_t<trim_left, Options...>; using trim_right_only = get_matcher_t<trim_right, Options...>; using trim_all = get_matcher_t<trim, Options...>; public: using quote = get_matcher_t<quote, Options...>; using escape = get_matcher_t<escape, Options...>; using trim_left = std::conditional_t<trim_all::enabled, trim_all, trim_left_only>; using trim_right = std::conditional_t<trim_all::enabled, trim_all, trim_right_only>; using multiline = get_multiline_t<Options...>; constexpr static bool string_error = (count_string_error == 1); constexpr static bool ignore_header = (count_ignore_header == 1); constexpr static bool ignore_empty = (count_ignore_empty == 1); constexpr static bool throw_on_error = (count_throw_on_error == 1); private: #define ASSERT_MSG "cannot have the same match character in multiple matchers" static_assert(!matches_intersect<escape, quote>(), ASSERT_MSG); constexpr static auto quote_trim_intersect = matches_intersect_union<quote, trim_left, trim_right>(); static_assert(!quote_trim_intersect, ASSERT_MSG); constexpr static auto escape_trim_intersect = matches_intersect_union<escape, trim_left, trim_right>(); static_assert(!escape_trim_intersect, ASSERT_MSG); #undef ASSERT_MSG static_assert( !multiline::enabled || (multiline::enabled && (quote::enabled || escape::enabled)), "to enable multiline either quote or escape needs to be enabled"); static_assert(!(trim_all::enabled && trim_left_only::enabled) && !(trim_all::enabled && trim_right_only::enabled), "ambiguous trim setup"); static_assert(count_multiline <= 1, "mutliline defined multiple times"); static_assert(count_string_error <= 1, "string_error defined multiple times"); static_assert(count_throw_on_error <= 1, "throw_on_error defined multiple times"); static_assert(count_throw_on_error + count_string_error <= 1, "cannot define both throw_on_error and string_error"); static_assert(number_of_valid_setup_types == sizeof...(Options), "one or multiple invalid setup parameters defined"); }; template <typename... Options> struct setup<setup<Options...>> : setup<Options...> {}; } /* ss */ namespace ss { template <typename... Options> class splitter { private: using quote = typename setup<Options...>::quote; using trim_left = typename setup<Options...>::trim_left; using trim_right = typename setup<Options...>::trim_right; using escape = typename setup<Options...>::escape; using multiline = typename setup<Options...>::multiline; constexpr static auto string_error = setup<Options...>::string_error; constexpr static auto throw_on_error = setup<Options...>::throw_on_error; constexpr static auto is_const_line = !quote::enabled && !escape::enabled; using error_type = std::conditional_t<string_error, std::string, bool>; public: using line_ptr_type = std::conditional_t<is_const_line, const char*, char*>; bool valid() const { if constexpr (string_error) { return error_.empty(); } else if constexpr (throw_on_error) { return true; } else { return !error_; } } const std::string& error_msg() const { assert_string_error_defined<string_error>(); return error_; } bool unterminated_quote() const { return unterminated_quote_; } const split_data& split(line_ptr_type new_line, const std::string& delimiter = default_delimiter) { split_data_.clear(); line_ = new_line; begin_ = line_; return split_impl_select_delim(delimiter); } private: //////////////// // resplit //////////////// // number of characters the end of line is shifted backwards size_t size_shifted() const { return escaped_; } void adjust_ranges(const char* old_line) { for (auto& [begin, end] : split_data_) { begin = begin - old_line + line_; end = end - old_line + line_; } } const split_data& resplit( line_ptr_type new_line, ssize_t new_size, const std::string& delimiter = default_delimiter) { // resplitting, continue from last slice if (!quote::enabled || !multiline::enabled || split_data_.empty() || !unterminated_quote()) { handle_error_invalid_resplit(); return split_data_; } const auto [old_line, old_begin] = *std::prev(split_data_.end()); size_t begin = old_begin - old_line - 1; // safety measure if (new_size != -1 && static_cast<size_t>(new_size) < begin) { handle_error_invalid_resplit(); return split_data_; } // if unterminated quote, the last element is junk split_data_.pop_back(); line_ = new_line; adjust_ranges(old_line); begin_ = line_ + begin; end_ = line_ - old_line + end_ - escaped_; curr_ = end_; resplitting_ = true; return split_impl_select_delim(delimiter); } //////////////// // error //////////////// void clear_error() { if constexpr (string_error) { error_.clear(); } else if constexpr (!throw_on_error) { error_ = false; } unterminated_quote_ = false; } void handle_error_empty_delimiter() { constexpr static auto error_msg = "empty delimiter"; if constexpr (string_error) { error_.clear(); error_.append(error_msg); } else if constexpr (throw_on_error) { throw ss::exception{error_msg}; } else { error_ = true; } } void handle_error_mismatched_quote(size_t n) { constexpr static auto error_msg = "mismatched quote at position: "; if constexpr (string_error) { error_.clear(); error_.append(error_msg + std::to_string(n)); } else if constexpr (throw_on_error) { throw ss::exception{error_msg + std::to_string(n)}; } else { error_ = true; } } void handle_error_unterminated_escape() { constexpr static auto error_msg = "unterminated escape at the end of the line"; if constexpr (string_error) { error_.clear(); error_.append(error_msg); } else if constexpr (throw_on_error) { throw ss::exception{error_msg}; } else { error_ = true; } } void handle_error_unterminated_quote() { constexpr static auto error_msg = "unterminated quote"; if constexpr (string_error) { error_.clear(); error_.append(error_msg); } else if constexpr (throw_on_error) { throw ss::exception{error_msg}; } else { error_ = true; } } void handle_error_invalid_resplit() { constexpr static auto error_msg = "invalid resplit, new line must be longer" "than the end of the last slice"; if constexpr (string_error) { error_.clear(); error_.append(error_msg); } else if constexpr (throw_on_error) { throw ss::exception{error_msg}; } else { error_ = true; } } //////////////// // matching //////////////// bool match(const char* const curr, char delim) { return *curr == delim; }; bool match(const char* const curr, const std::string& delim) { return strncmp(curr, delim.c_str(), delim.size()) == 0; }; size_t delimiter_size(char) { return 1; } size_t delimiter_size(const std::string& delim) { return delim.size(); } void trim_left_if_enabled(line_ptr_type& curr) { if constexpr (trim_left::enabled) { while (trim_left::match(*curr)) { ++curr; } } } void trim_right_if_enabled(line_ptr_type& curr) { if constexpr (trim_right::enabled) { while (trim_right::match(*curr)) { ++curr; } } } template <typename Delim> std::tuple<size_t, bool> match_delimiter(line_ptr_type begin, const Delim& delim) { line_ptr_type end = begin; trim_right_if_enabled(end); // just spacing if (*end == '\0') { return {0, false}; } // not a delimiter if (!match(end, delim)) { shift_if_escaped(end); return {1 + end - begin, false}; } end += delimiter_size(delim); trim_left_if_enabled(end); // delimiter return {end - begin, true}; } //////////////// // shifting //////////////// void shift_if_escaped(line_ptr_type& curr) { if constexpr (escape::enabled) { if (escape::match(*curr)) { if (curr[1] == '\0') { if constexpr (!multiline::enabled) { handle_error_unterminated_escape(); } done_ = true; return; } shift_and_jump_escape(); } } } void shift_and_jump_escape() { shift_and_set_current(); if constexpr (!is_const_line) { ++escaped_; } ++end_; } void shift_push_and_start_next(size_t n) { shift_and_push(); begin_ = end_ + n; } void shift_and_push() { shift_and_set_current(); split_data_.emplace_back(begin_, curr_); } void shift_and_set_current() { if constexpr (!is_const_line) { if (escaped_ > 0) { std::copy_n(curr_ + escaped_, end_ - curr_ - escaped_, curr_); curr_ = end_ - escaped_; return; } } curr_ = end_; } //////////////// // split impl //////////////// const split_data& split_impl_select_delim( const std::string& delimiter = default_delimiter) { clear_error(); switch (delimiter.size()) { case 0: handle_error_empty_delimiter(); return split_data_; case 1: return split_impl(delimiter[0]); default: return split_impl(delimiter); } } template <typename Delim> const split_data& split_impl(const Delim& delim) { trim_left_if_enabled(begin_); for (done_ = false; !done_; read(delim)) ; return split_data_; } //////////////// // reading //////////////// template <typename Delim> void read(const Delim& delim) { escaped_ = 0; if constexpr (quote::enabled) { if constexpr (multiline::enabled) { if (resplitting_) { resplitting_ = false; ++begin_; read_quoted(delim); return; } } if (quote::match(*begin_)) { curr_ = end_ = ++begin_; read_quoted(delim); return; } } curr_ = end_ = begin_; read_normal(delim); } template <typename Delim> void read_normal(const Delim& delim) { while (true) { auto [width, valid] = match_delimiter(end_, delim); if (!valid) { // not a delimiter if (width == 0) { // eol shift_and_push(); done_ = true; break; } else { end_ += width; continue; } } else { // found delimiter shift_push_and_start_next(width); break; } } } template <typename Delim> void read_quoted(const Delim& delim) { if constexpr (quote::enabled) { while (true) { if (!quote::match(*end_)) { if constexpr (escape::enabled) { if (escape::match(*end_)) { if (end_[1] == '\0') { // eol, unterminated escape // eg: ... "hel\\0 if constexpr (!multiline::enabled) { handle_error_unterminated_escape(); } done_ = true; break; } // not eol shift_and_jump_escape(); ++end_; continue; } } // not escaped // eol, unterminated quote error // eg: ..."hell\0 -> quote not terminated if (*end_ == '\0') { shift_and_set_current(); unterminated_quote_ = true; if constexpr (!multiline::enabled) { handle_error_unterminated_quote(); } split_data_.emplace_back(line_, begin_); done_ = true; break; } // not eol ++end_; continue; } // quote found // ... auto [width, valid] = match_delimiter(end_ + 1, delim); // delimiter if (valid) { shift_push_and_start_next(width + 1); break; } // not delimiter // double quote // eg: ...,"hel""lo",... -> hel"lo if (quote::match(end_[1])) { shift_and_jump_escape(); ++end_; continue; } // not double quote if (width == 0) { // eol // eg: ...,"hello" \0 -> hello // eg no trim: ...,"hello"\0 -> hello shift_and_push(); } else { // mismatched quote // eg: ...,"hel"lo,... -> error handle_error_mismatched_quote(end_ - line_); split_data_.emplace_back(line_, begin_); } done_ = true; break; } } } //////////////// // members //////////////// public: error_type error_{}; bool unterminated_quote_{false}; bool done_{true}; bool resplitting_{false}; size_t escaped_{0}; split_data split_data_; line_ptr_type begin_; line_ptr_type curr_; line_ptr_type end_; line_ptr_type line_; template <typename...> friend class converter; }; } /* ss */ #ifndef SSP_DISABLE_FAST_FLOAT #else #endif // TODO try from_chars for integer conversions namespace ss { //////////////// // number converters //////////////// #ifndef SSP_DISABLE_FAST_FLOAT template <typename T> std::enable_if_t<std::is_floating_point_v<T>, std::optional<T>> to_num( const char* const begin, const char* const end) { T ret; auto [ptr, ec] = fast_float::from_chars(begin, end, ret); if (ec != std::errc() || ptr != end) { return std::nullopt; } return ret; } #else template <typename T> std::enable_if_t<std::is_floating_point_v<T>, std::optional<T>> to_num( const char* const begin, const char* const end) { constexpr static auto buff_max = 64; char buff[buff_max]; size_t string_range = std::distance(begin, end); if (string_range > buff_max) { return std::nullopt; } std::copy_n(begin, string_range, buff); buff[string_range] = '\0'; T ret; char* parse_end = nullptr; if constexpr (std::is_same_v<T, float>) { ret = std::strtof(buff, &parse_end); } else if constexpr (std::is_same_v<T, double>) { ret = std::strtod(buff, &parse_end); } else if constexpr (std::is_same_v<T, long double>) { ret = std::strtold(buff, &parse_end); } if (parse_end != buff + string_range) { return std::nullopt; } return ret; } #endif inline std::optional<short> from_char(char c) { if (c >= '0' && c <= '9') { return c - '0'; } return std::nullopt; } #if defined(__clang__) && defined(__MINGW32__) && !defined(__MINGW64__) #define MINGW32_CLANG #endif // mingw32 clang does not support some of the builtin functions #if (defined(__clang__) || defined(__GNUC__) || defined(__GUNG__)) && \ !defined(MINGW32_CLANG) //////////////// // mul overflow detection //////////////// template <typename T> bool mul_overflow(T& result, T operand) { return __builtin_mul_overflow(result, operand, &result); } template <> inline bool mul_overflow(int& result, int operand) { return __builtin_smul_overflow(result, operand, &result); } template <> inline bool mul_overflow(long& result, long operand) { return __builtin_smull_overflow(result, operand, &result); } template <> inline bool mul_overflow(long long& result, long long operand) { return __builtin_smulll_overflow(result, operand, &result); } template <> inline bool mul_overflow(unsigned int& result, unsigned int operand) { return __builtin_umul_overflow(result, operand, &result); } template <> inline bool mul_overflow(unsigned long& result, unsigned long operand) { return __builtin_umull_overflow(result, operand, &result); } template <> inline bool mul_overflow(unsigned long long& result, unsigned long long operand) { return __builtin_umulll_overflow(result, operand, &result); } //////////////// // addition overflow detection //////////////// template <typename T> inline bool add_overflow(T& result, T operand) { return __builtin_add_overflow(result, operand, &result); } template <> inline bool add_overflow(int& result, int operand) { return __builtin_sadd_overflow(result, operand, &result); } template <> inline bool add_overflow(long& result, long operand) { return __builtin_saddl_overflow(result, operand, &result); } template <> inline bool add_overflow(long long& result, long long operand) { return __builtin_saddll_overflow(result, operand, &result); } template <> inline bool add_overflow(unsigned int& result, unsigned int operand) { return __builtin_uadd_overflow(result, operand, &result); } template <> inline bool add_overflow(unsigned long& result, unsigned long operand) { return __builtin_uaddl_overflow(result, operand, &result); } template <> inline bool add_overflow(unsigned long long& result, unsigned long long operand) { return __builtin_uaddll_overflow(result, operand, &result); } //////////////// // substraction overflow detection //////////////// template <typename T> inline bool sub_overflow(T& result, T operand) { return __builtin_sub_overflow(result, operand, &result); } template <> inline bool sub_overflow(int& result, int operand) { return __builtin_ssub_overflow(result, operand, &result); } template <> inline bool sub_overflow(long& result, long operand) { return __builtin_ssubl_overflow(result, operand, &result); } template <> inline bool sub_overflow(long long& result, long long operand) { return __builtin_ssubll_overflow(result, operand, &result); } // Note: sub_overflow function should be unreachable for unsigned values template <> inline bool sub_overflow(unsigned int& result, unsigned int operand) { return __builtin_usub_overflow(result, operand, &result); } template <> inline bool sub_overflow(unsigned long& result, unsigned long operand) { return __builtin_usubl_overflow(result, operand, &result); } template <> inline bool sub_overflow(unsigned long long& result, unsigned long long operand) { return __builtin_usubll_overflow(result, operand, &result); } template <typename T, typename F> bool shift_and_add_overflow(T& value, T digit, F add_last_digit_overflow) { if (mul_overflow<T>(value, 10) || add_last_digit_overflow(value, digit)) { return true; } return false; } #else template <typename T, typename U> bool shift_and_add_overflow(T& value, T digit, U is_negative) { digit = (is_negative) ? -digit : digit; T old_value = value; value = 10 * value + digit; T expected_old_value = (value - digit) / 10; if (old_value != expected_old_value) { return true; } return false; } #endif template <typename T> std::enable_if_t<std::is_integral_v<T>, std::optional<T>> to_num( const char* begin, const char* end) { if (begin == end) { return std::nullopt; } bool is_negative = false; if constexpr (std::is_signed_v<T>) { is_negative = *begin == '-'; if (is_negative) { ++begin; } } #if (defined(__clang__) || defined(__GNUC__) || defined(__GUNG__)) && \ !defined(MINGW32_CLANG) auto add_last_digit_overflow = (is_negative) ? sub_overflow<T> : add_overflow<T>; #else auto add_last_digit_overflow = is_negative; #endif T value = 0; for (auto i = begin; i != end; ++i) { if (auto digit = from_char(*i); !digit || shift_and_add_overflow<T>(value, digit.value(), add_last_digit_overflow)) { return std::nullopt; } } return value; } //////////////// // extract //////////////// namespace error { template <typename T> struct unsupported_type { constexpr static bool value = false; }; } /* namespace */ template <typename T> std::enable_if_t<!std::is_integral_v<T> && !std::is_floating_point_v<T> && !is_instance_of_v<std::optional, T> && !is_instance_of_v<std::variant, T>, bool> extract(const char*, const char*, T&) { static_assert(error::unsupported_type<T>::value, "Conversion for given type is not defined, an " "\'extract\' function needs to be defined!"); } template <typename T> std::enable_if_t<std::is_integral_v<T> || std::is_floating_point_v<T>, bool> extract(const char* begin, const char* end, T& value) { auto optional_value = to_num<T>(begin, end); if (!optional_value) { return false; } value = optional_value.value(); return true; } template <typename T> std::enable_if_t<is_instance_of_v<std::optional, T>, bool> extract( const char* begin, const char* end, T& value) { typename T::value_type raw_value; if (extract(begin, end, raw_value)) { value = raw_value; } else { value = std::nullopt; } return true; } template <typename T, size_t I> bool extract_variant(const char* begin, const char* end, T& value) { using IthType = std::variant_alternative_t<I, std::decay_t<T>>; IthType ithValue; if (extract<IthType>(begin, end, ithValue)) { value = ithValue; return true; } else if constexpr (I + 1 < std::variant_size_v<T>) { return extract_variant<T, I + 1>(begin, end, value); } return false; } template <typename T> std::enable_if_t<is_instance_of_v<std::variant, T>, bool> extract( const char* begin, const char* end, T& value) { return extract_variant<T, 0>(begin, end, value); } //////////////// // extract specialization //////////////// template <> inline bool extract(const char* begin, const char* end, bool& value) { if (end == begin + 1) { if (*begin == '1') { value = true; } else if (*begin == '0') { value = false; } else { return false; } } else { size_t size = end - begin; if (size == 4 && strncmp(begin, "true", size) == 0) { value = true; } else if (size == 5 && strncmp(begin, "false", size) == 0) { value = false; } else { return false; } } return true; } template <> inline bool extract(const char* begin, const char* end, char& value) { value = *begin; return (end == begin + 1); } template <> inline bool extract(const char* begin, const char* end, std::string& value) { value = std::string{begin, end}; return true; } template <> inline bool extract(const char* begin, const char* end, std::string_view& value) { value = std::string_view{begin, static_cast<size_t>(end - begin)}; return true; } } /* ss */ namespace ss { INIT_HAS_METHOD(tied) INIT_HAS_METHOD(ss_valid) INIT_HAS_METHOD(error) //////////////// // replace validator //////////////// // replace 'validator' types with elements they operate on // eg. no_validator_tup_t<int, ss::nx<char, 'A', 'B'>> <=> std::tuple<int, char> // where ss::nx<char, 'A', 'B'> is a validator '(n)one e(x)cept' which // checks if the returned character is either 'A' or 'B', returns error if not // additionally if one element is left in the pack, it will be unwrapped from // the tuple eg. no_void_validator_tup_t<int> <=> int instead of std::tuple<int> template <typename T, typename U = void> struct no_validator; template <typename T> struct no_validator<T, typename std::enable_if_t<has_m_ss_valid_t<T>>> { using type = typename member_wrapper<decltype(&T::ss_valid)>::arg_type; }; template <typename T, typename U> struct no_validator { using type = T; }; template <typename T> using no_validator_t = typename no_validator<T>::type; template <typename... Ts> struct no_validator_tup : apply_trait<no_validator, std::tuple<Ts...>> {}; template <typename... Ts> struct no_validator_tup<std::tuple<Ts...>> : no_validator_tup<Ts...> {}; template <typename T> struct no_validator_tup<std::tuple<T>> : no_validator<T> {}; template <typename... Ts> using no_validator_tup_t = typename no_validator_tup<Ts...>::type; //////////////// // no void tuple //////////////// template <typename... Ts> struct no_void_tup : filter_not<std::is_void, no_validator_tup_t<Ts...>> {}; template <typename... Ts> using no_void_tup_t = filter_not_t<std::is_void, Ts...>; //////////////// // no void or validator //////////////// // replace 'validators' and remove void from tuple template <typename... Ts> struct no_void_validator_tup : no_validator_tup<no_void_tup_t<Ts...>> {}; template <typename... Ts> struct no_void_validator_tup<std::tuple<Ts...>> : no_validator_tup<no_void_tup_t<Ts...>> {}; template <typename... Ts> using no_void_validator_tup_t = typename no_void_validator_tup<Ts...>::type; //////////////// // tied class //////////////// // check if the parameter pack is only one element which is a class and has // the 'tied' method which is to be used for type deduction when converting template <typename T, typename... Ts> struct tied_class { constexpr static bool value = (sizeof...(Ts) == 0 && std::is_class_v<T> && has_m_tied<T>::value); }; template <typename... Ts> constexpr bool tied_class_v = tied_class<Ts...>::value; //////////////// // converter //////////////// template <typename... Options> class converter { using line_ptr_type = typename splitter<Options...>::line_ptr_type; constexpr static auto string_error = setup<Options...>::string_error; constexpr static auto throw_on_error = setup<Options...>::throw_on_error; constexpr static auto default_delimiter = ","; using error_type = std::conditional_t<string_error, std::string, bool>; public: // parses line with given delimiter, returns a 'T' object created with // extracted values of type 'Ts' template <typename T, typename... Ts> T convert_object(line_ptr_type line, const std::string& delim = default_delimiter) { return to_object<T>(convert<Ts...>(line, delim)); } // parses line with given delimiter, returns tuple of objects with // extracted values of type 'Ts' template <typename... Ts> no_void_validator_tup_t<Ts...> convert( line_ptr_type line, const std::string& delim = default_delimiter) { split(line, delim); if (splitter_.valid()) { return convert<Ts...>(splitter_.split_data_); } else { handle_error_bad_split(); return {}; } } // parses already split line, returns 'T' object with extracted values template <typename T, typename... Ts> T convert_object(const split_data& elems) { return to_object<T>(convert<Ts...>(elems)); } // same as above, but uses cached split line template <typename T, typename... Ts> T convert_object() { return to_object<T>(convert<Ts...>()); } // parses already split line, returns either a tuple of objects with // parsed values (returns raw element (no tuple) if Ts is empty), or if // one argument is given which is a class which has a tied // method which returns a tuple, returns that type template <typename T, typename... Ts> no_void_validator_tup_t<T, Ts...> convert(const split_data& elems) { if constexpr (sizeof...(Ts) == 0 && is_instance_of_v<std::tuple, T>) { return convert_impl(elems, static_cast<T*>(nullptr)); } else if constexpr (tied_class_v<T, Ts...>) { using arg_ref_tuple = std::result_of_t<decltype (&T::tied)(T)>; using arg_tuple = apply_trait_t<std::decay, arg_ref_tuple>; return to_object<T>( convert_impl(elems, static_cast<arg_tuple*>(nullptr))); } else { return convert_impl<T, Ts...>(elems); } } // same as above, but uses cached split line template <typename T, typename... Ts> no_void_validator_tup_t<T, Ts...> convert() { return convert<T, Ts...>(splitter_.split_data_); } bool valid() const { if constexpr (string_error) { return error_.empty(); } else if constexpr (throw_on_error) { return true; } else { return !error_; } } const std::string& error_msg() const { assert_string_error_defined<string_error>(); return error_; } bool unterminated_quote() const { return splitter_.unterminated_quote(); } // 'splits' string by given delimiter, returns vector of pairs which // contain the beginnings and the ends of each column of the string const split_data& split(line_ptr_type line, const std::string& delim = default_delimiter) { splitter_.split_data_.clear(); if (line[0] == '\0') { return splitter_.split_data_; } return splitter_.split(line, delim); } private: //////////////// // resplit //////////////// const split_data& resplit(line_ptr_type new_line, ssize_t new_size, const std::string& delim) { return splitter_.resplit(new_line, new_size, delim); } size_t size_shifted() { return splitter_.size_shifted(); } //////////////// // error //////////////// void clear_error() { if constexpr (string_error) { error_.clear(); } else { error_ = false; } } std::string error_sufix(const string_range msg, size_t pos) const { std::string error; error.reserve(32); error.append("at column ") .append(std::to_string(pos + 1)) .append(": \'") .append(msg.first, msg.second) .append("\'"); return error; } void handle_error_bad_split() { if constexpr (string_error) { error_.clear(); error_.append(splitter_.error_msg()); } else if constexpr (!throw_on_error) { error_ = true; } } void handle_error_unterminated_escape() { if constexpr (string_error) { error_.clear(); splitter_.handle_error_unterminated_escape(); error_.append(splitter_.error_msg()); } else if constexpr (throw_on_error) { splitter_.handle_error_unterminated_escape(); } else { error_ = true; } } void handle_error_unterminated_quote() { if constexpr (string_error) { error_.clear(); splitter_.handle_error_unterminated_quote(); error_.append(splitter_.error_msg()); } else if constexpr (throw_on_error) { splitter_.handle_error_unterminated_quote(); } else { error_ = true; } } void handle_error_multiline_limit_reached() { constexpr static auto error_msg = "multiline limit reached"; if constexpr (string_error) { error_.clear(); error_.append(error_msg); } else if constexpr (throw_on_error) { throw ss::exception{error_msg}; } else { error_ = true; } } void handle_error_invalid_conversion(const string_range msg, size_t pos) { constexpr static auto error_msg = "invalid conversion for parameter "; if constexpr (string_error) { error_.clear(); error_.append(error_msg).append(error_sufix(msg, pos)); } else if constexpr (throw_on_error) { throw ss::exception{error_msg + error_sufix(msg, pos)}; } else { error_ = true; } } void handle_error_validation_failed(const char* const error, const string_range msg, size_t pos) { if constexpr (string_error) { error_.clear(); error_.append(error).append(" ").append(error_sufix(msg, pos)); } else if constexpr (throw_on_error) { throw ss::exception{error + (" " + error_sufix(msg, pos))}; } else { error_ = true; } } void handle_error_number_of_columns(size_t expected_pos, size_t pos) { constexpr static auto error_msg1 = "invalid number of columns, expected: "; constexpr static auto error_msg2 = ", got: "; if constexpr (string_error) { error_.clear(); error_.append(error_msg1) .append(std::to_string(expected_pos)) .append(error_msg2) .append(std::to_string(pos)); } else if constexpr (throw_on_error) { throw ss::exception{error_msg1 + std::to_string(expected_pos) + error_msg2 + std::to_string(pos)}; } else { error_ = true; } } void handle_error_incompatible_mapping(size_t argument_size, size_t mapping_size) { constexpr static auto error_msg1 = "number of arguments does not match mapping, expected: "; constexpr static auto error_msg2 = ", got: "; if constexpr (string_error) { error_.clear(); error_.append(error_msg1) .append(std::to_string(mapping_size)) .append(error_msg2) .append(std::to_string(argument_size)); } else if constexpr (throw_on_error) { throw ss::exception{error_msg1 + std::to_string(mapping_size) + error_msg2 + std::to_string(argument_size)}; } else { error_ = true; } } //////////////// // convert implementation //////////////// template <typename... Ts> no_void_validator_tup_t<Ts...> convert_impl(const split_data& elems) { clear_error(); if (!splitter_.valid()) { handle_error_bad_split(); return {}; } if (!columns_mapped()) { if (sizeof...(Ts) != elems.size()) { handle_error_number_of_columns(sizeof...(Ts), elems.size()); return {}; } } else { if (sizeof...(Ts) != column_mappings_.size()) { handle_error_incompatible_mapping(sizeof...(Ts), column_mappings_.size()); return {}; } if (elems.size() != number_of_columns_) { handle_error_number_of_columns(number_of_columns_, elems.size()); return {}; } } return extract_tuple<Ts...>(elems); } // do not know how to specialize by return type :( template <typename... Ts> no_void_validator_tup_t<std::tuple<Ts...>> convert_impl( const split_data& elems, const std::tuple<Ts...>*) { return convert_impl<Ts...>(elems); } //////////////// // column mapping //////////////// bool columns_mapped() const { return column_mappings_.size() != 0; } size_t column_position(size_t tuple_position) const { if (!columns_mapped()) { return tuple_position; } return column_mappings_[tuple_position]; } // assumes positions are valid and the vector is not empty void set_column_mapping(std::vector<size_t> positions, size_t number_of_columns) { column_mappings_ = positions; number_of_columns_ = number_of_columns; } void clear_column_positions() { column_mappings_.clear(); number_of_columns_ = 0; } //////////////// // conversion //////////////// template <typename T> void extract_one(no_validator_t<T>& dst, const string_range msg, size_t pos) { if (!valid()) { return; } if constexpr (std::is_same_v<T, std::string>) { extract(msg.first, msg.second, dst); return; } if (!extract(msg.first, msg.second, dst)) { handle_error_invalid_conversion(msg, pos); return; } if constexpr (has_m_ss_valid_t<T>) { if (T validator; !validator.ss_valid(dst)) { if constexpr (has_m_error_t<T>) { handle_error_validation_failed(validator.error(), msg, pos); } else { handle_error_validation_failed("validation error", msg, pos); } return; } } } template <size_t ArgN, size_t TupN, typename... Ts> void extract_multiple(no_void_validator_tup_t<Ts...>& tup, const split_data& elems) { using elem_t = std::tuple_element_t<ArgN, std::tuple<Ts...>>; constexpr bool not_void = !std::is_void_v<elem_t>; constexpr bool one_element = count_not_v<std::is_void, Ts...> == 1; if constexpr (not_void) { if constexpr (one_element) { extract_one<elem_t>(tup, elems[column_position(ArgN)], ArgN); } else { auto& el = std::get<TupN>(tup); extract_one<elem_t>(el, elems[column_position(ArgN)], ArgN); } } if constexpr (sizeof...(Ts) > ArgN + 1) { constexpr size_t NewTupN = (not_void) ? TupN + 1 : TupN; extract_multiple<ArgN + 1, NewTupN, Ts...>(tup, elems); } } template <typename... Ts> no_void_validator_tup_t<Ts...> extract_tuple(const split_data& elems) { static_assert(!all_of_v<std::is_void, Ts...>, "at least one parameter must be non void"); no_void_validator_tup_t<Ts...> ret{}; extract_multiple<0, 0, Ts...>(ret, elems); return ret; } //////////////// // members //////////////// error_type error_{}; splitter<Options...> splitter_; template <typename...> friend class parser; std::vector<size_t> column_mappings_; size_t number_of_columns_; }; } /* ss */ // TODO add single header tests namespace ss { template <typename... Options> class parser { constexpr static auto string_error = setup<Options...>::string_error; constexpr static auto throw_on_error = setup<Options...>::throw_on_error; using multiline = typename setup<Options...>::multiline; using error_type = std::conditional_t<string_error, std::string, bool>; constexpr static bool escaped_multiline_enabled = multiline::enabled && setup<Options...>::escape::enabled; constexpr static bool quoted_multiline_enabled = multiline::enabled && setup<Options...>::quote::enabled; constexpr static bool ignore_header = setup<Options...>::ignore_header; constexpr static bool ignore_empty = setup<Options...>::ignore_empty; public: parser(const std::string& file_name, const std::string& delim = ss::default_delimiter) : file_name_{file_name}, reader_{file_name_, delim} { if (reader_.file_) { read_line(); if constexpr (ignore_header) { ignore_next(); } else { raw_header_ = reader_.get_buffer(); } } else { handle_error_file_not_open(); eof_ = true; } } parser(parser&& other) = default; parser& operator=(parser&& other) = default; parser() = delete; parser(const parser& other) = delete; parser& operator=(const parser& other) = delete; bool valid() const { if constexpr (string_error) { return error_.empty(); } else if constexpr (throw_on_error) { return true; } else { return !error_; } } const std::string& error_msg() const { assert_string_error_defined<string_error>(); return error_; } bool eof() const { return eof_; } bool ignore_next() { return reader_.read_next(); } template <typename T, typename... Ts> T get_object() { return to_object<T>(get_next<Ts...>()); } size_t line() const { return reader_.line_number_ > 1 ? reader_.line_number_ - 1 : reader_.line_number_; } template <typename T, typename... Ts> no_void_validator_tup_t<T, Ts...> get_next() { std::optional<std::string> error; if (!eof_) { if constexpr (throw_on_error) { try { reader_.parse(); } catch (const ss::exception& e) { read_line(); decorate_rethrow(e); } } else { reader_.parse(); } } reader_.update(); if (!reader_.converter_.valid()) { handle_error_invalid_conversion(); read_line(); return {}; } clear_error(); if (eof_) { handle_error_eof_reached(); return {}; } if constexpr (throw_on_error) { try { auto value = reader_.converter_.template convert<T, Ts...>(); read_line(); return value; } catch (const ss::exception& e) { read_line(); decorate_rethrow(e); } } auto value = reader_.converter_.template convert<T, Ts...>(); if (!reader_.converter_.valid()) { handle_error_invalid_conversion(); } read_line(); return value; } bool field_exists(const std::string& field) { if (header_.empty()) { split_header_data(); } return header_index(field).has_value(); } template <typename... Ts> void use_fields(const Ts&... fields_args) { if constexpr (ignore_header) { handle_error_header_ignored(); return; } if (header_.empty()) { split_header_data(); } if (!valid()) { return; } auto fields = std::vector<std::string>{fields_args...}; if (fields.empty()) { handle_error_empty_mapping(); return; } std::vector<size_t> column_mappings; for (const auto& field : fields) { if (std::count(fields.begin(), fields.end(), field) != 1) { handle_error_field_used_multiple_times(field); return; } auto index = header_index(field); if (!index) { handle_error_invalid_field(field); return; } column_mappings.push_back(*index); } reader_.converter_.set_column_mapping(column_mappings, header_.size()); reader_.next_line_converter_.set_column_mapping(column_mappings, header_.size()); if (line() == 1) { ignore_next(); } } //////////////// // iterator //////////////// template <bool get_object, typename T, typename... Ts> struct iterable { struct iterator { using value = std::conditional_t<get_object, T, no_void_validator_tup_t<T, Ts...>>; iterator() : parser_{nullptr}, value_{} { } iterator(parser<Options...>* parser) : parser_{parser}, value_{} { } iterator(const iterator& other) = default; iterator(iterator&& other) = default; value& operator*() { return value_; } value* operator->() { return &value_; } iterator& operator++() { if (!parser_ || parser_->eof()) { parser_ = nullptr; } else { if constexpr (get_object) { value_ = std::move(parser_->template get_object<T, Ts...>()); } else { value_ = std::move(parser_->template get_next<T, Ts...>()); } } return *this; } iterator& operator++(int) { return ++*this; } friend bool operator==(const iterator& lhs, const iterator& rhs) { return (lhs.parser_ == nullptr && rhs.parser_ == nullptr) || (lhs.parser_ == rhs.parser_ && &lhs.value_ == &rhs.value_); } friend bool operator!=(const iterator& lhs, const iterator& rhs) { return !(lhs == rhs); } private: parser<Options...>* parser_; value value_; }; iterable(parser<Options...>* parser) : parser_{parser} { } iterator begin() { return ++iterator{parser_}; } iterator end() { return iterator{}; } private: parser<Options...>* parser_; }; template <typename... Ts> auto iterate() { return iterable<false, Ts...>{this}; } template <typename... Ts> auto iterate_object() { return iterable<true, Ts...>{this}; } //////////////// // composite conversion //////////////// template <typename... Ts> class composite { public: composite(std::tuple<Ts...>&& values, parser& parser) : values_{std::move(values)}, parser_{parser} { } // tries to convert the same line with a different output type // only if the previous conversion was not successful, // returns composite containing itself and the new output // as optional, additionally, if a parameter is passed, and // that parameter can be invoked using the converted value, // than it will be invoked in the case of a valid conversion template <typename... Us, typename Fun = none> composite<Ts..., std::optional<no_void_validator_tup_t<Us...>>> or_else( Fun&& fun = none{}) { using Value = no_void_validator_tup_t<Us...>; std::optional<Value> value; try_convert_and_invoke<Value, Us...>(value, fun); return composite_with(std::move(value)); } // same as or_else, but saves the result into a 'U' object // instead of a tuple template <typename U, typename... Us, typename Fun = none> composite<Ts..., std::optional<U>> or_object(Fun&& fun = none{}) { std::optional<U> value; try_convert_and_invoke<U, Us...>(value, fun); return composite_with(std::move(value)); } std::tuple<Ts...> values() { return values_; } template <typename Fun> auto on_error(Fun&& fun) { assert_throw_on_error_not_defined<throw_on_error>(); if (!parser_.valid()) { if constexpr (std::is_invocable_v<Fun>) { fun(); } else { static_assert(string_error, "to enable error messages within the " "on_error method " "callback string_error needs to be enabled"); std::invoke(std::forward<Fun>(fun), parser_.error_msg()); } } return *this; } private: template <typename T> composite<Ts..., T> composite_with(T&& new_value) { auto merged_values = std::tuple_cat(std::move(values_), std::tuple<T>{parser_.valid() ? std::forward<T>(new_value) : std::nullopt}); return {std::move(merged_values), parser_}; } template <typename U, typename... Us, typename Fun = none> void try_convert_and_invoke(std::optional<U>& value, Fun&& fun) { if (!parser_.valid()) { auto tuple_output = try_same<Us...>(); if (!parser_.valid()) { return; } if constexpr (!std::is_same_v<U, decltype(tuple_output)>) { value = to_object<U>(std::move(tuple_output)); } else { value = std::move(tuple_output); } parser_.try_invoke(*value, std::forward<Fun>(fun)); } } template <typename U, typename... Us> no_void_validator_tup_t<U, Us...> try_same() { parser_.clear_error(); auto value = parser_.reader_.converter_.template convert<U, Us...>(); if (!parser_.reader_.converter_.valid()) { parser_.handle_error_invalid_conversion(); } return value; } //////////////// // members //////////////// std::tuple<Ts...> values_; parser& parser_; }; // tries to convert a line and returns a composite which is // able to try additional conversions in case of failure template <typename... Ts, typename Fun = none> composite<std::optional<no_void_validator_tup_t<Ts...>>> try_next( Fun&& fun = none{}) { assert_throw_on_error_not_defined<throw_on_error>(); using Ret = no_void_validator_tup_t<Ts...>; return try_invoke_and_make_composite< std::optional<Ret>>(get_next<Ts...>(), std::forward<Fun>(fun)); } // identical to try_next but returns composite with object instead of a // tuple template <typename T, typename... Ts, typename Fun = none> composite<std::optional<T>> try_object(Fun&& fun = none{}) { assert_throw_on_error_not_defined<throw_on_error>(); return try_invoke_and_make_composite< std::optional<T>>(get_object<T, Ts...>(), std::forward<Fun>(fun)); } private: // tries to invoke the given function (see below), if the function // returns a value which can be used as a conditional, and it returns // false, the function sets an error, and allows the invoke of the // next possible conversion as if the validation of the current one // failed template <typename Arg, typename Fun = none> void try_invoke(Arg&& arg, Fun&& fun) { constexpr bool is_none = std::is_same_v<std::decay_t<Fun>, none>; if constexpr (!is_none) { using Ret = decltype(try_invoke_impl(arg, std::forward<Fun>(fun))); constexpr bool returns_void = std::is_same_v<Ret, void>; if constexpr (!returns_void) { if (!try_invoke_impl(arg, std::forward<Fun>(fun))) { handle_error_failed_check(); } } else { try_invoke_impl(arg, std::forward<Fun>(fun)); } } } // tries to invoke the function if not none // it first tries to invoke the function without arguments, // than with one argument if the function accepts the whole tuple // as an argument, and finally tries to invoke it with the tuple // laid out as a parameter pack template <typename Arg, typename Fun = none> auto try_invoke_impl(Arg&& arg, Fun&& fun) { constexpr bool is_none = std::is_same_v<std::decay_t<Fun>, none>; if constexpr (!is_none) { if constexpr (std::is_invocable_v<Fun>) { return fun(); } else if constexpr (std::is_invocable_v<Fun, Arg>) { return std::invoke(std::forward<Fun>(fun), std::forward<Arg>(arg)); } else { return std::apply(std::forward<Fun>(fun), std::forward<Arg>(arg)); } } } template <typename T, typename Fun = none> composite<T> try_invoke_and_make_composite(T&& value, Fun&& fun) { if (valid()) { try_invoke(*value, std::forward<Fun>(fun)); } return {valid() ? std::move(value) : std::nullopt, *this}; } //////////////// // header //////////////// void split_header_data() { ss::splitter<Options...> splitter; std::string raw_header_copy = raw_header_; splitter.split(raw_header_copy.data(), reader_.delim_); for (const auto& [begin, end] : splitter.split_data_) { std::string field{begin, end}; if (std::find(header_.begin(), header_.end(), field) != header_.end()) { handle_error_invalid_header(field); header_.clear(); return; } header_.push_back(std::move(field)); } } std::optional<size_t> header_index(const std::string& field) { auto it = std::find(header_.begin(), header_.end(), field); if (it == header_.end()) { return std::nullopt; } return std::distance(header_.begin(), it); } //////////////// // error //////////////// void clear_error() { if constexpr (string_error) { error_.clear(); } else { error_ = false; } } void handle_error_failed_check() { constexpr static auto error_msg = " failed check"; if constexpr (string_error) { error_.clear(); error_.append(file_name_).append(error_msg); } else if constexpr (throw_on_error) { throw ss::exception{file_name_ + error_msg}; } else { error_ = true; } } void handle_error_file_not_open() { constexpr static auto error_msg = " could not be opened"; if constexpr (string_error) { error_.clear(); error_.append(file_name_).append(error_msg); } else if constexpr (throw_on_error) { throw ss::exception{file_name_ + error_msg}; } else { error_ = true; } } void handle_error_eof_reached() { constexpr static auto error_msg = " read on end of file"; if constexpr (string_error) { error_.clear(); error_.append(file_name_).append(error_msg); } else if constexpr (throw_on_error) { throw ss::exception{file_name_ + error_msg}; } else { error_ = true; } } void handle_error_invalid_conversion() { if constexpr (string_error) { error_.clear(); error_.append(file_name_) .append(" ") .append(std::to_string(reader_.line_number_)) .append(": ") .append(reader_.converter_.error_msg()); } else if constexpr (!throw_on_error) { error_ = true; } } void handle_error_header_ignored() { constexpr static auto error_msg = ": the header row is ignored within the setup it cannot be used"; if constexpr (string_error) { error_.clear(); error_.append(file_name_).append(error_msg); } else if constexpr (throw_on_error) { throw ss::exception{file_name_ + error_msg}; } else { error_ = true; } } void handle_error_invalid_field(const std::string& field) { constexpr static auto error_msg = ": header does not contain given field: "; if constexpr (string_error) { error_.clear(); error_.append(file_name_).append(error_msg).append(field); } else if constexpr (throw_on_error) { throw ss::exception{file_name_ + error_msg + field}; } else { error_ = true; } } void handle_error_field_used_multiple_times(const std::string& field) { constexpr static auto error_msg = ": given field used multiple times: "; if constexpr (string_error) { error_.clear(); error_.append(file_name_).append(error_msg).append(field); } else if constexpr (throw_on_error) { throw ss::exception{file_name_ + error_msg + field}; } else { error_ = true; } } void handle_error_empty_mapping() { constexpr static auto error_msg = "received empty mapping"; if constexpr (string_error) { error_.clear(); error_.append(error_msg); } else if constexpr (throw_on_error) { throw ss::exception{error_msg}; } else { error_ = true; } } void handle_error_invalid_header(const std::string& field) { constexpr static auto error_msg = "header contains duplicates: "; if constexpr (string_error) { error_.clear(); error_.append(error_msg).append(error_msg); } else if constexpr (throw_on_error) { throw ss::exception{error_msg + field}; } else { error_ = true; } } void decorate_rethrow(const ss::exception& e) const { static_assert(throw_on_error, "throw_on_error needs to be enabled to use this method"); throw ss::exception{std::string{file_name_} .append(" ") .append(std::to_string(line())) .append(": ") .append(e.what())}; } //////////////// // line reading //////////////// void read_line() { eof_ = !reader_.read_next(); } struct reader { reader(const std::string& file_name_, const std::string& delim) : delim_{delim}, file_{fopen(file_name_.c_str(), "rb")} { } reader(reader&& other) : buffer_{other.buffer_}, next_line_buffer_{other.next_line_buffer_}, helper_buffer_{other.helper_buffer_}, converter_{std::move( other.converter_)}, next_line_converter_{std::move(other.next_line_converter_)}, buffer_size_{other.buffer_size_}, next_line_buffer_size_{other.next_line_buffer_size_}, helper_size_{other.helper_size_}, delim_{std::move(other.delim_)}, file_{other.file_}, crlf_{other.crlf_}, line_number_{other.line_number_}, next_line_size_{ other.next_line_size_} { other.buffer_ = nullptr; other.next_line_buffer_ = nullptr; other.helper_buffer_ = nullptr; other.file_ = nullptr; } reader& operator=(reader&& other) { if (this != &other) { buffer_ = other.buffer_; next_line_buffer_ = other.next_line_buffer_; helper_buffer_ = other.helper_buffer_; converter_ = std::move(other.converter_); next_line_converter_ = std::move(other.next_line_converter_); buffer_size_ = other.buffer_size_; next_line_buffer_size_ = other.next_line_buffer_size_; helper_size_ = other.helper_size_; delim_ = std::move(other.delim_); file_ = other.file_; crlf_ = other.crlf_; line_number_ = other.line_number_; next_line_size_ = other.next_line_size_; other.buffer_ = nullptr; other.next_line_buffer_ = nullptr; other.helper_buffer_ = nullptr; other.file_ = nullptr; } return *this; } ~reader() { free(buffer_); free(next_line_buffer_); free(helper_buffer_); if (file_) { fclose(file_); } } reader() = delete; reader(const reader& other) = delete; reader& operator=(const reader& other) = delete; // read next line each time in order to set eof_ bool read_next() { next_line_converter_.clear_error(); ssize_t ssize = 0; size_t size = 0; while (size == 0) { ++line_number_; if (next_line_buffer_size_ > 0) { next_line_buffer_[0] = '\0'; } ssize = get_line(&next_line_buffer_, &next_line_buffer_size_, file_); if (ssize == -1) { return false; } size = remove_eol(next_line_buffer_, ssize); if constexpr (!ignore_empty) { break; } } next_line_size_ = size; return true; } void parse() { size_t limit = 0; if constexpr (escaped_multiline_enabled) { while (escaped_eol(next_line_size_)) { if (multiline_limit_reached(limit)) { return; } if (!append_next_line_to_buffer(next_line_buffer_, next_line_size_)) { next_line_converter_.handle_error_unterminated_escape(); return; } } } next_line_converter_.split(next_line_buffer_, delim_); if constexpr (quoted_multiline_enabled) { while (unterminated_quote()) { next_line_size_ -= next_line_converter_.size_shifted(); if (multiline_limit_reached(limit)) { return; } if (!append_next_line_to_buffer(next_line_buffer_, next_line_size_)) { next_line_converter_.handle_error_unterminated_quote(); return; } if constexpr (escaped_multiline_enabled) { while (escaped_eol(next_line_size_)) { if (multiline_limit_reached(limit)) { return; } if (!append_next_line_to_buffer(next_line_buffer_, next_line_size_)) { next_line_converter_ .handle_error_unterminated_escape(); return; } } } next_line_converter_.resplit(next_line_buffer_, next_line_size_, delim_); } } } void update() { std::swap(buffer_, next_line_buffer_); std::swap(buffer_size_, next_line_buffer_size_); std::swap(converter_, next_line_converter_); } bool multiline_limit_reached(size_t& limit) { if constexpr (multiline::size > 0) { if (limit++ >= multiline::size) { next_line_converter_.handle_error_multiline_limit_reached(); return true; } } return false; } bool escaped_eol(size_t size) { const char* curr; for (curr = next_line_buffer_ + size - 1; curr >= next_line_buffer_ && setup<Options...>::escape::match(*curr); --curr) { } return (next_line_buffer_ - curr + size) % 2 == 0; } bool unterminated_quote() { return next_line_converter_.unterminated_quote(); } void undo_remove_eol(char* buffer, size_t& string_end) { if (crlf_) { std::copy_n("\r\n\0", 3, buffer + string_end); string_end += 2; } else { std::copy_n("\n\0", 2, buffer + string_end); string_end += 1; } } size_t remove_eol(char*& buffer, size_t ssize) { size_t size = ssize - 1; if (ssize >= 2 && buffer[ssize - 2] == '\r') { crlf_ = true; size--; } else { crlf_ = false; } buffer[size] = '\0'; return size; } void realloc_concat(char*& first, size_t& first_size, const char* const second, size_t second_size) { // TODO make buffer_size an argument next_line_buffer_size_ = first_size + second_size + 3; auto new_first = static_cast<char*>( realloc(static_cast<void*>(first), next_line_buffer_size_)); if (!first) { throw std::bad_alloc{}; } first = new_first; std::copy_n(second, second_size + 1, first + first_size); first_size += second_size; } bool append_next_line_to_buffer(char*& buffer, size_t& size) { undo_remove_eol(buffer, size); ssize_t next_ssize = get_line(&helper_buffer_, &helper_size_, file_); if (next_ssize == -1) { return false; } ++line_number_; size_t next_size = remove_eol(helper_buffer_, next_ssize); realloc_concat(buffer, size, helper_buffer_, next_size); return true; } std::string get_buffer() { return std::string{next_line_buffer_, next_line_buffer_size_}; } //////////////// // members //////////////// char* buffer_{nullptr}; char* next_line_buffer_{nullptr}; char* helper_buffer_{nullptr}; converter<Options...> converter_; converter<Options...> next_line_converter_; size_t buffer_size_{0}; size_t next_line_buffer_size_{0}; size_t helper_size_{0}; std::string delim_; FILE* file_{nullptr}; bool crlf_{false}; size_t line_number_{0}; size_t next_line_size_{0}; }; //////////////// // members //////////////// std::string file_name_; error_type error_{}; reader reader_; std::vector<std::string> header_; std::string raw_header_; bool eof_{false}; }; } /* ss */