ssp/include/ss/converter.hpp

486 lines
14 KiB
C++

#pragma once
#include "extract.hpp"
#include "function_traits.hpp"
#include "restrictions.hpp"
#include "splitter.hpp"
#include "type_traits.hpp"
#include <string>
#include <type_traits>
#include <vector>
namespace ss {
INIT_HAS_METHOD(tied)
INIT_HAS_METHOD(ss_valid)
INIT_HAS_METHOD(error)
////////////////
// replace validator
////////////////
// replace 'validator' types with elements they operate on
// eg. no_validator_tup_t<int, ss::nx<char, 'A', 'B'>> <=> std::tuple<int, char>
// where ss::nx<char, 'A', 'B'> is a validator '(n)one e(x)cept' which
// checks if the returned character is either 'A' or 'B', returns error if not
// additionally if one element is left in the pack, it will be unwrapped from
// the tuple eg. no_void_validator_tup_t<int> <=> int instead of std::tuple<int>
template <typename T, typename U = void>
struct no_validator;
template <typename T>
struct no_validator<T, typename std::enable_if_t<has_m_ss_valid_t<T>>> {
using type = typename member_wrapper<decltype(&T::ss_valid)>::arg_type;
};
template <typename T, typename U>
struct no_validator {
using type = T;
};
template <typename T>
using no_validator_t = typename no_validator<T>::type;
template <typename... Ts>
struct no_validator_tup : apply_trait<no_validator, std::tuple<Ts...>> {};
template <typename... Ts>
struct no_validator_tup<std::tuple<Ts...>> : no_validator_tup<Ts...> {};
template <typename T>
struct no_validator_tup<std::tuple<T>> : no_validator<T> {};
template <typename... Ts>
using no_validator_tup_t = typename no_validator_tup<Ts...>::type;
////////////////
// no void tuple
////////////////
template <typename... Ts>
struct no_void_tup : filter_not<std::is_void, no_validator_tup_t<Ts...>> {};
template <typename... Ts>
using no_void_tup_t = filter_not_t<std::is_void, Ts...>;
////////////////
// no void or validator
////////////////
// replace 'validators' and remove void from tuple
template <typename... Ts>
struct no_void_validator_tup : no_validator_tup<no_void_tup_t<Ts...>> {};
template <typename... Ts>
struct no_void_validator_tup<std::tuple<Ts...>>
: no_validator_tup<no_void_tup_t<Ts...>> {};
template <typename... Ts>
using no_void_validator_tup_t = typename no_void_validator_tup<Ts...>::type;
////////////////
// tied class
////////////////
// check if the parameter pack is only one element which is a class and has
// the 'tied' method which is to be used for type deduction when converting
template <typename T, typename... Ts>
struct tied_class {
constexpr static bool value =
(sizeof...(Ts) == 0 && std::is_class_v<T> && has_m_tied<T>::value);
};
template <typename... Ts>
constexpr bool tied_class_v = tied_class<Ts...>::value;
////////////////
// converter
////////////////
template <typename... Matchers>
class converter {
using line_ptr_type = typename splitter<Matchers...>::line_ptr_type;
constexpr static auto string_error = setup<Matchers...>::string_error;
constexpr static auto default_delimiter = ",";
using error_type = ss::ternary_t<string_error, std::string, bool>;
public:
// parses line with given delimiter, returns a 'T' object created with
// extracted values of type 'Ts'
template <typename T, typename... Ts>
T convert_object(line_ptr_type line,
const std::string& delim = default_delimiter) {
return to_object<T>(convert<Ts...>(line, delim));
}
// parses line with given delimiter, returns tuple of objects with
// extracted values of type 'Ts'
template <typename... Ts>
no_void_validator_tup_t<Ts...> convert(
line_ptr_type line, const std::string& delim = default_delimiter) {
split(line, delim);
return convert<Ts...>(splitter_.split_data_);
}
// parses already split line, returns 'T' object with extracted values
template <typename T, typename... Ts>
T convert_object(const split_data& elems) {
return to_object<T>(convert<Ts...>(elems));
}
// same as above, but uses cached split line
template <typename T, typename... Ts>
T convert_object() {
return to_object<T>(convert<Ts...>());
}
// parses already split line, returns either a tuple of objects with
// parsed values (returns raw element (no tuple) if Ts is empty), or if
// one argument is given which is a class which has a tied
// method which returns a tuple, returns that type
template <typename T, typename... Ts>
no_void_validator_tup_t<T, Ts...> convert(const split_data& elems) {
if constexpr (sizeof...(Ts) == 0 && is_instance_of_v<std::tuple, T>) {
return convert_impl(elems, static_cast<T*>(nullptr));
} else if constexpr (tied_class_v<T, Ts...>) {
using arg_ref_tuple = std::result_of_t<decltype (&T::tied)(T)>;
using arg_tuple = apply_trait_t<std::decay, arg_ref_tuple>;
return to_object<T>(
convert_impl(elems, static_cast<arg_tuple*>(nullptr)));
} else {
return convert_impl<T, Ts...>(elems);
}
}
// same as above, but uses cached split line
template <typename T, typename... Ts>
no_void_validator_tup_t<T, Ts...> convert() {
return convert<T, Ts...>(splitter_.split_data_);
}
bool valid() const {
if constexpr (string_error) {
return error_.empty();
} else {
return !error_;
}
}
const std::string& error_msg() const {
assert_string_error_defined<string_error>();
return error_;
}
bool unterminated_quote() const {
return splitter_.unterminated_quote();
}
// 'splits' string by given delimiter, returns vector of pairs which
// contain the beginnings and the ends of each column of the string
const split_data& split(line_ptr_type line,
const std::string& delim = default_delimiter) {
splitter_.split_data_.clear();
if (line[0] == '\0') {
return splitter_.split_data_;
}
return splitter_.split(line, delim);
}
private:
////////////////
// resplit
////////////////
const split_data& resplit(line_ptr_type new_line, ssize_t new_size,
const std::string& delim = default_delimiter) {
return splitter_.resplit(new_line, new_size, delim);
}
size_t size_shifted() {
return splitter_.size_shifted();
}
////////////////
// error
////////////////
void clear_error() {
if constexpr (string_error) {
error_.clear();
} else {
error_ = false;
}
}
std::string error_sufix(const string_range msg, size_t pos) const {
std::string error;
error.reserve(32);
error.append("at column ")
.append(std::to_string(pos + 1))
.append(": \'")
.append(msg.first, msg.second)
.append("\'");
return error;
}
void set_error_unterminated_quote() {
if constexpr (string_error) {
error_.clear();
error_.append(splitter_.error_msg());
} else {
error_ = true;
}
}
void set_error_unterminated_escape() {
if constexpr (string_error) {
error_.clear();
splitter_.set_error_unterminated_escape();
error_.append(splitter_.error_msg());
} else {
error_ = true;
}
}
void set_error_multiline_limit_reached() {
if constexpr (string_error) {
error_.clear();
error_.append("multiline limit reached.");
} else {
error_ = true;
}
}
void set_error_invalid_conversion(const string_range msg, size_t pos) {
if constexpr (string_error) {
error_.clear();
error_.append("invalid conversion for parameter ")
.append(error_sufix(msg, pos));
} else {
error_ = true;
}
}
void set_error_validate(const char* const error, const string_range msg,
size_t pos) {
if constexpr (string_error) {
error_.clear();
error_.append(error).append(" ").append(error_sufix(msg, pos));
} else {
error_ = true;
}
}
void set_error_number_of_colums(size_t expected_pos, size_t pos) {
if constexpr (string_error) {
error_.clear();
error_.append("invalid number of columns, expected: ")
.append(std::to_string(expected_pos))
.append(", got: ")
.append(std::to_string(pos));
} else {
error_ = true;
}
}
void set_error_incompatible_mapping(size_t argument_size,
size_t mapping_size) {
if constexpr (string_error) {
error_.clear();
error_
.append(
"number of arguments does not match mapping, expected: ")
.append(std::to_string(mapping_size))
.append(", got: ")
.append(std::to_string(argument_size));
} else {
error_ = true;
}
}
void set_error_invalid_mapping() {
if constexpr (string_error) {
error_.clear();
error_.append("received empty mapping");
} else {
error_ = true;
}
}
void set_error_mapping_out_of_range(size_t maximum_index,
size_t number_of_columnts) {
if constexpr (string_error) {
error_.clear();
error_.append("maximum index: ")
.append(std::to_string(maximum_index))
.append(", greater then number of columns: ")
.append(std::to_string(number_of_columnts));
} else {
error_ = true;
}
}
////////////////
// convert implementation
////////////////
template <typename... Ts>
no_void_validator_tup_t<Ts...> convert_impl(const split_data& elems) {
clear_error();
using return_type = no_void_validator_tup_t<Ts...>;
if (!splitter_.valid()) {
set_error_unterminated_quote();
no_void_validator_tup_t<Ts...> ret{};
return ret;
}
if (!columns_mapped()) {
if (sizeof...(Ts) != elems.size()) {
set_error_number_of_colums(sizeof...(Ts), elems.size());
return return_type{};
}
} else {
if (sizeof...(Ts) != column_mappings_.size()) {
set_error_incompatible_mapping(sizeof...(Ts),
column_mappings_.size());
return return_type{};
}
if (elems.size() != number_of_columnts_) {
set_error_number_of_colums(sizeof...(Ts),
column_mappings_.size());
return return_type{};
}
}
return extract_tuple<Ts...>(elems);
}
// do not know how to specialize by return type :(
template <typename... Ts>
no_void_validator_tup_t<std::tuple<Ts...>> convert_impl(
const split_data& elems, const std::tuple<Ts...>*) {
return convert_impl<Ts...>(elems);
}
////////////////
// column mapping
////////////////
bool columns_mapped() const {
return column_mappings_.size() != 0;
}
size_t column_position(size_t tuple_position) const {
if (!columns_mapped()) {
return tuple_position;
}
return column_mappings_[tuple_position];
}
void set_column_mapping(std::vector<size_t> positions,
size_t number_of_columnts) {
if (positions.empty()) {
set_error_invalid_mapping();
return;
}
auto max_index = *std::max_element(positions.begin(), positions.end());
if (max_index >= number_of_columnts) {
set_error_mapping_out_of_range(max_index, number_of_columnts);
return;
}
column_mappings_ = positions;
number_of_columnts_ = number_of_columnts;
}
void clear_column_positions() {
column_mappings_.clear();
number_of_columnts_ = 0;
}
////////////////
// conversion
////////////////
template <typename T>
void extract_one(no_validator_t<T>& dst, const string_range msg,
size_t pos) {
if (!valid()) {
return;
}
if constexpr (std::is_same_v<T, std::string>) {
extract(msg.first, msg.second, dst);
return;
}
if (!extract(msg.first, msg.second, dst)) {
set_error_invalid_conversion(msg, pos);
return;
}
if constexpr (has_m_ss_valid_t<T>) {
if (T validator; !validator.ss_valid(dst)) {
if constexpr (has_m_error_t<T>) {
set_error_validate(validator.error(), msg, pos);
} else {
set_error_validate("validation error", msg, pos);
}
return;
}
}
}
template <size_t ArgN, size_t TupN, typename... Ts>
void extract_multiple(no_void_validator_tup_t<Ts...>& tup,
const split_data& elems) {
using elem_t = std::tuple_element_t<ArgN, std::tuple<Ts...>>;
constexpr bool not_void = !std::is_void_v<elem_t>;
constexpr bool one_element = count_not_v<std::is_void, Ts...> == 1;
if constexpr (not_void) {
if constexpr (one_element) {
extract_one<elem_t>(tup, elems[column_position(ArgN)], ArgN);
} else {
auto& el = std::get<TupN>(tup);
extract_one<elem_t>(el, elems[column_position(ArgN)], ArgN);
}
}
if constexpr (sizeof...(Ts) > ArgN + 1) {
constexpr size_t NewTupN = (not_void) ? TupN + 1 : TupN;
extract_multiple<ArgN + 1, NewTupN, Ts...>(tup, elems);
}
}
template <typename... Ts>
no_void_validator_tup_t<Ts...> extract_tuple(const split_data& elems) {
static_assert(!all_of_v<std::is_void, Ts...>,
"at least one parameter must be non void");
no_void_validator_tup_t<Ts...> ret{};
extract_multiple<0, 0, Ts...>(ret, elems);
return ret;
}
////////////////
// members
////////////////
error_type error_{};
splitter<Matchers...> splitter_;
template <typename...>
friend class parser;
std::vector<size_t> column_mappings_;
size_t number_of_columnts_;
};
} /* ss */