ssp/include/ss/parser.hpp

354 lines
11 KiB
C++

#pragma once
#include "converter.hpp"
#include "extract.hpp"
#include "restrictions.hpp"
#include <cstring>
#include <optional>
#include <stdlib.h>
#include <string>
#include <vector>
namespace ss {
struct none {};
template <typename...>
class composite;
class parser {
public:
parser(const std::string& file_name, const std::string& delimiter)
: file_name_{file_name}, delim_{delimiter},
file_{fopen(file_name_.c_str(), "rb")} {
if (file_) {
read_line();
} else {
set_error_file_not_open();
eof_ = true;
}
}
~parser() {
fclose(file_);
}
bool valid() const {
return (error_mode_ == error_mode::error_string) ? string_error_.empty()
: bool_error_ == false;
}
void set_error_mode(error_mode mode) {
error_mode_ = mode;
converter_.set_error_mode(mode);
}
const std::string& error_msg() const {
return string_error_;
}
bool eof() const {
return eof_;
}
bool ignore_next() {
return buff_.read(file_);
}
template <typename T, typename... Ts>
T get_object() {
return to_object<T>(get_next<Ts...>());
}
template <typename T, typename... Ts>
no_void_validator_tup_t<T, Ts...> get_next() {
buff_.update();
clear_error();
if (eof_) {
set_error_eof_reached();
return {};
}
split_input_ = converter_.split(buff_.get(), delim_);
auto value = converter_.convert<T, Ts...>(split_input_);
if (!converter_.valid()) {
set_error_invalid_conversion();
}
read_line();
return value;
}
////////////////
// composite conversion
////////////////
template <typename... Ts>
class composite {
public:
composite(std::tuple<Ts...>&& values, parser& parser)
: values_{std::move(values)}, parser_{parser} {
}
// tries to convert the same line with a different output type
// only if the previous conversion was not successful,
// returns composite containing itself and the new output
// as optional, additionally, if a parameter is passed, and
// that parameter can be invoked using the converted value,
// than it will be invoked in the case of a valid conversion
template <typename... Us, typename Fun = none>
composite<Ts..., std::optional<no_void_validator_tup_t<Us...>>> or_else(
Fun&& fun = none{}) {
using Value = no_void_validator_tup_t<Us...>;
std::optional<Value> value;
try_convert_and_invoke<Value, Us...>(value, fun);
return composite_with(std::move(value));
}
// same as or_else, but saves the result into a 'U' object
// instead of a tuple
template <typename U, typename... Us, typename Fun = none>
composite<Ts..., std::optional<U>> or_object(Fun&& fun = none{}) {
std::optional<U> value;
try_convert_and_invoke<U, Us...>(value, fun);
return composite_with(std::move(value));
}
std::tuple<Ts...> values() {
return values_;
}
template <typename Fun>
auto on_error(Fun&& fun) {
if (!parser_.valid()) {
if constexpr (std::is_invocable_v<Fun>) {
fun();
} else {
std::invoke(std::forward<Fun>(fun), parser_.error_msg());
}
}
return *this;
}
private:
template <typename T>
composite<Ts..., T> composite_with(T&& new_value) {
auto merged_values =
std::tuple_cat(std::move(values_),
std::tuple{parser_.valid()
? std::forward<T>(new_value)
: std::nullopt});
return {std::move(merged_values), parser_};
}
template <typename U, typename... Us, typename Fun = none>
void try_convert_and_invoke(std::optional<U>& value, Fun&& fun) {
if (!parser_.valid()) {
auto tuple_output = try_same<Us...>();
if (!parser_.valid()) {
return;
}
if constexpr (!std::is_same_v<U, decltype(tuple_output)>) {
value = to_object<U>(std::move(tuple_output));
} else {
value = std::move(tuple_output);
}
parser_.try_invoke(*value, std::forward<Fun>(fun));
}
}
template <typename U, typename... Us>
no_void_validator_tup_t<U, Us...> try_same() {
parser_.clear_error();
auto value =
parser_.converter_.convert<U, Us...>(parser_.split_input_);
if (!parser_.converter_.valid()) {
parser_.set_error_invalid_conversion();
}
return value;
}
std::tuple<Ts...> values_;
parser& parser_;
};
// tries to convert a line and returns a composite which is
// able to try additional conversions in case of failure
template <typename... Ts, typename Fun = none>
composite<std::optional<no_void_validator_tup_t<Ts...>>> try_next(
Fun&& fun = none{}) {
using Ret = no_void_validator_tup_t<Ts...>;
return try_invoke_and_make_composite<
std::optional<Ret>>(get_next<Ts...>(), std::forward<Fun>(fun));
};
// identical to try_next but returns composite with object instead of a
// tuple
template <typename T, typename... Ts, typename Fun = none>
composite<std::optional<T>> try_object(Fun&& fun = none{}) {
return try_invoke_and_make_composite<
std::optional<T>>(get_object<T, Ts...>(), std::forward<Fun>(fun));
};
private:
template <typename...>
friend class composite;
// tries to invoke the given function (see below), if the function
// returns a value which can be used as a conditional, and it returns
// false, the function sets an error, and allows the invoke of the
// next possible conversion as if the validation of the current one
// failed
template <typename Arg, typename Fun = none>
void try_invoke(Arg&& arg, Fun&& fun) {
constexpr bool is_none = std::is_same_v<std::decay_t<Fun>, none>;
if constexpr (!is_none) {
using Ret = decltype(try_invoke_impl(arg, std::forward<Fun>(fun)));
constexpr bool returns_void = std::is_same_v<Ret, void>;
if constexpr (!returns_void) {
if (!try_invoke_impl(arg, std::forward<Fun>(fun))) {
set_error_failed_check();
}
} else {
try_invoke_impl(arg, std::forward<Fun>(fun));
}
}
}
// tries to invoke the function if not none
// it first tries to invoke the function without arguments,
// than with one argument if the function accepts the whole tuple
// as an argument, and finally tries to invoke it with the tuple
// laid out as a parameter pack
template <typename Arg, typename Fun = none>
auto try_invoke_impl(Arg&& arg, Fun&& fun) {
constexpr bool is_none = std::is_same_v<std::decay_t<Fun>, none>;
if constexpr (!is_none) {
if constexpr (std::is_invocable_v<Fun>) {
return fun();
} else if constexpr (std::is_invocable_v<Fun, Arg>) {
return std::invoke(std::forward<Fun>(fun),
std::forward<Arg>(arg));
} else {
return std::apply(std::forward<Fun>(fun),
std::forward<Arg>(arg));
}
}
}
template <typename T, typename Fun = none>
composite<T> try_invoke_and_make_composite(T&& value, Fun&& fun) {
if (valid()) {
try_invoke(*value, std::forward<Fun>(fun));
}
return {valid() ? std::move(value) : std::nullopt, *this};
}
////////////////
// line reading
////////////////
class buffer {
char* buffer_{nullptr};
char* new_buffer_{nullptr};
size_t size_{0};
public:
~buffer() {
free(buffer_);
free(new_buffer_);
}
bool read(FILE* file) {
ssize_t size = getline(&new_buffer_, &size_, file);
size_t string_end = size - 1;
if (size == -1) {
return false;
}
if (size >= 2 && new_buffer_[size - 2] == '\r') {
string_end--;
}
new_buffer_[string_end] = '\0';
return true;
}
const char* get() const {
return buffer_;
}
void update() {
std::swap(buffer_, new_buffer_);
}
};
void read_line() {
eof_ = !buff_.read(file_);
++line_number_;
}
////////////////
// error
////////////////
void clear_error() {
string_error_.clear();
bool_error_ = false;
}
void set_error_failed_check() {
if (error_mode_ == error_mode::error_string) {
string_error_.append(file_name_).append(" failed check.");
} else {
bool_error_ = true;
}
}
void set_error_file_not_open() {
string_error_.append(file_name_).append(" could not be opened.");
bool_error_ = true;
}
void set_error_eof_reached() {
if (error_mode_ == error_mode::error_string) {
string_error_.append(file_name_).append(" reached end of file.");
} else {
bool_error_ = true;
}
}
void set_error_invalid_conversion() {
if (error_mode_ == error_mode::error_string) {
string_error_.append(file_name_)
.append(" ")
.append(std::to_string(line_number_))
.append(": ")
.append(converter_.error_msg())
.append(": \"")
.append(buff_.get())
.append("\"");
} else {
bool_error_ = true;
}
}
////////////////
// members
////////////////
const std::string file_name_;
const std::string delim_;
std::string string_error_;
bool bool_error_{false};
error_mode error_mode_{error_mode::error_bool};
converter converter_;
converter::split_input split_input_;
FILE* file_{nullptr};
buffer buff_;
size_t line_number_{0};
bool eof_{false};
};
} /* ss */