ssp/include/ss/parser.hpp

767 lines
24 KiB
C++

#pragma once
#include "common.hpp"
#include "converter.hpp"
#include "exception.hpp"
#include "extract.hpp"
#include "restrictions.hpp"
#include <cstdlib>
#include <cstring>
#include <optional>
#include <string>
#include <vector>
namespace ss {
template <typename... Options>
class parser {
constexpr static auto string_error = setup<Options...>::string_error;
constexpr static auto throw_on_error = setup<Options...>::throw_on_error;
using multiline = typename setup<Options...>::multiline;
using error_type = std::conditional_t<string_error, std::string, bool>;
constexpr static bool escaped_multiline_enabled =
multiline::enabled && setup<Options...>::escape::enabled;
constexpr static bool quoted_multiline_enabled =
multiline::enabled && setup<Options...>::quote::enabled;
constexpr static bool ignore_header = setup<Options...>::ignore_header;
constexpr static bool ignore_empty = setup<Options...>::ignore_empty;
public:
parser(const std::string& file_name,
const std::string& delim = ss::default_delimiter)
: file_name_{file_name}, reader_{file_name_, delim} {
if (reader_.file_) {
read_line();
if constexpr (ignore_header) {
ignore_next();
} else {
header_ = reader_.get_next_row();
}
} else {
set_error_file_not_open();
eof_ = true;
}
}
parser(parser&& other) = default;
parser& operator=(parser&& other) = default;
parser() = delete;
parser(const parser& other) = delete;
parser& operator=(const parser& other) = delete;
bool valid() const {
if constexpr (string_error) {
return error_.empty();
} else {
return !error_;
}
}
const std::string& error_msg() const {
assert_string_error_defined<string_error>();
return error_;
}
bool eof() const {
return eof_;
}
bool ignore_next() {
return reader_.read_next();
}
template <typename T, typename... Ts>
T get_object() {
return to_object<T>(get_next<Ts...>());
}
size_t line() const {
return valid() ? reader_.line_number_ - 1 : 0;
}
template <typename T, typename... Ts>
no_void_validator_tup_t<T, Ts...> get_next() {
reader_.update();
clear_error();
if (eof_) {
set_error_eof_reached();
return {};
}
auto value = reader_.converter_.template convert<T, Ts...>();
if (!reader_.converter_.valid()) {
set_error_invalid_conversion();
}
read_line();
return value;
}
bool field_exists(const std::string& field) {
return header_index(field).has_value();
}
template <typename... Ts>
void use_fields(const Ts&... fields_args) {
if constexpr (ignore_header) {
set_error_header_ignored();
return;
}
if (!valid()) {
return;
}
auto fields = std::vector<std::string>{fields_args...};
std::vector<size_t> column_mappings;
for (const auto& field : fields) {
if (std::count(fields.begin(), fields.end(), field) != 1) {
set_error_field_used_multiple_times(field);
return;
}
auto index = header_index(field);
if (!index) {
set_error_invalid_field(field);
return;
}
column_mappings.push_back(*index);
}
reader_.converter_.set_column_mapping(column_mappings, header_.size());
reader_.next_line_converter_.set_column_mapping(column_mappings,
header_.size());
if (line() == 0) {
ignore_next();
}
}
////////////////
// iterator
////////////////
template <bool get_object, typename T, typename... Ts>
struct iterable {
struct iterator {
using value = std::conditional_t<get_object, T,
no_void_validator_tup_t<T, Ts...>>;
iterator() : parser_{nullptr} {
}
iterator(parser<Options...>* parser) : parser_{parser} {
}
value& operator*() {
return value_;
}
value* operator->() {
return &value_;
}
iterator& operator++() {
if (parser_->eof()) {
parser_ = nullptr;
} else {
if constexpr (get_object) {
value_ =
std::move(parser_->template get_object<T, Ts...>());
} else {
value_ =
std::move(parser_->template get_next<T, Ts...>());
}
}
return *this;
}
iterator& operator++(int) {
return ++*this;
}
friend bool operator==(const iterator& lhs, const iterator& rhs) {
return (lhs.parser_ == nullptr && rhs.parser_ == nullptr) ||
(lhs.parser_ == rhs.parser_ &&
&lhs.value_ == &rhs.value_);
}
friend bool operator!=(const iterator& lhs, const iterator& rhs) {
return !(lhs == rhs);
}
private:
value value_;
parser<Options...>* parser_;
};
iterable(parser<Options...>* parser) : parser_{parser} {
}
iterator begin() {
return ++iterator{parser_};
}
iterator end() {
return iterator{};
}
private:
parser<Options...>* parser_;
};
template <typename... Ts>
auto iterate() {
return iterable<false, Ts...>{this};
}
template <typename... Ts>
auto iterate_object() {
return iterable<true, Ts...>{this};
}
////////////////
// composite conversion
////////////////
template <typename... Ts>
class composite {
public:
composite(std::tuple<Ts...>&& values, parser& parser)
: values_{std::move(values)}, parser_{parser} {
}
// tries to convert the same line with a different output type
// only if the previous conversion was not successful,
// returns composite containing itself and the new output
// as optional, additionally, if a parameter is passed, and
// that parameter can be invoked using the converted value,
// than it will be invoked in the case of a valid conversion
template <typename... Us, typename Fun = none>
composite<Ts..., std::optional<no_void_validator_tup_t<Us...>>> or_else(
Fun&& fun = none{}) {
using Value = no_void_validator_tup_t<Us...>;
std::optional<Value> value;
try_convert_and_invoke<Value, Us...>(value, fun);
return composite_with(std::move(value));
}
// same as or_else, but saves the result into a 'U' object
// instead of a tuple
template <typename U, typename... Us, typename Fun = none>
composite<Ts..., std::optional<U>> or_object(Fun&& fun = none{}) {
std::optional<U> value;
try_convert_and_invoke<U, Us...>(value, fun);
return composite_with(std::move(value));
}
std::tuple<Ts...> values() {
return values_;
}
template <typename Fun>
auto on_error(Fun&& fun) {
if (!parser_.valid()) {
if constexpr (std::is_invocable_v<Fun>) {
fun();
} else {
static_assert(string_error,
"to enable error messages within the "
"on_error method "
"callback string_error needs to be enabled");
std::invoke(std::forward<Fun>(fun), parser_.error_msg());
}
}
return *this;
}
private:
template <typename T>
composite<Ts..., T> composite_with(T&& new_value) {
auto merged_values =
std::tuple_cat(std::move(values_),
std::tuple<T>{parser_.valid()
? std::forward<T>(new_value)
: std::nullopt});
return {std::move(merged_values), parser_};
}
template <typename U, typename... Us, typename Fun = none>
void try_convert_and_invoke(std::optional<U>& value, Fun&& fun) {
if (!parser_.valid()) {
auto tuple_output = try_same<Us...>();
if (!parser_.valid()) {
return;
}
if constexpr (!std::is_same_v<U, decltype(tuple_output)>) {
value = to_object<U>(std::move(tuple_output));
} else {
value = std::move(tuple_output);
}
parser_.try_invoke(*value, std::forward<Fun>(fun));
}
}
template <typename U, typename... Us>
no_void_validator_tup_t<U, Us...> try_same() {
parser_.clear_error();
auto value =
parser_.reader_.converter_.template convert<U, Us...>();
if (!parser_.reader_.converter_.valid()) {
parser_.set_error_invalid_conversion();
}
return value;
}
////////////////
// members
////////////////
std::tuple<Ts...> values_;
parser& parser_;
};
// tries to convert a line and returns a composite which is
// able to try additional conversions in case of failure
template <typename... Ts, typename Fun = none>
composite<std::optional<no_void_validator_tup_t<Ts...>>> try_next(
Fun&& fun = none{}) {
using Ret = no_void_validator_tup_t<Ts...>;
return try_invoke_and_make_composite<
std::optional<Ret>>(get_next<Ts...>(), std::forward<Fun>(fun));
}
// identical to try_next but returns composite with object instead of a
// tuple
template <typename T, typename... Ts, typename Fun = none>
composite<std::optional<T>> try_object(Fun&& fun = none{}) {
return try_invoke_and_make_composite<
std::optional<T>>(get_object<T, Ts...>(), std::forward<Fun>(fun));
}
private:
// tries to invoke the given function (see below), if the function
// returns a value which can be used as a conditional, and it returns
// false, the function sets an error, and allows the invoke of the
// next possible conversion as if the validation of the current one
// failed
template <typename Arg, typename Fun = none>
void try_invoke(Arg&& arg, Fun&& fun) {
constexpr bool is_none = std::is_same_v<std::decay_t<Fun>, none>;
if constexpr (!is_none) {
using Ret = decltype(try_invoke_impl(arg, std::forward<Fun>(fun)));
constexpr bool returns_void = std::is_same_v<Ret, void>;
if constexpr (!returns_void) {
if (!try_invoke_impl(arg, std::forward<Fun>(fun))) {
set_error_failed_check();
}
} else {
try_invoke_impl(arg, std::forward<Fun>(fun));
}
}
}
// tries to invoke the function if not none
// it first tries to invoke the function without arguments,
// than with one argument if the function accepts the whole tuple
// as an argument, and finally tries to invoke it with the tuple
// laid out as a parameter pack
template <typename Arg, typename Fun = none>
auto try_invoke_impl(Arg&& arg, Fun&& fun) {
constexpr bool is_none = std::is_same_v<std::decay_t<Fun>, none>;
if constexpr (!is_none) {
if constexpr (std::is_invocable_v<Fun>) {
return fun();
} else if constexpr (std::is_invocable_v<Fun, Arg>) {
return std::invoke(std::forward<Fun>(fun),
std::forward<Arg>(arg));
} else {
return std::apply(std::forward<Fun>(fun),
std::forward<Arg>(arg));
}
}
}
template <typename T, typename Fun = none>
composite<T> try_invoke_and_make_composite(T&& value, Fun&& fun) {
if (valid()) {
try_invoke(*value, std::forward<Fun>(fun));
}
return {valid() ? std::move(value) : std::nullopt, *this};
}
////////////////
// header
////////////////
std::optional<size_t> header_index(const std::string& field) {
auto it = std::find(header_.begin(), header_.end(), field);
if (it == header_.end()) {
return std::nullopt;
}
return std::distance(header_.begin(), it);
}
////////////////
// error
////////////////
void clear_error() {
if constexpr (string_error) {
error_.clear();
} else {
error_ = false;
}
}
void set_error_failed_check() {
if constexpr (string_error) {
error_.append(file_name_).append(" failed check");
throw_if_throw_on_error<throw_on_error>(error_);
} else {
error_ = true;
}
}
void set_error_file_not_open() {
if constexpr (string_error) {
error_.append(file_name_).append(" could not be opened");
throw_if_throw_on_error<throw_on_error>(error_);
} else {
error_ = true;
}
}
void set_error_eof_reached() {
if constexpr (string_error) {
error_.append(file_name_).append(" reached end of file");
throw_if_throw_on_error<throw_on_error>(error_);
} else {
error_ = true;
}
}
void set_error_invalid_conversion() {
if constexpr (string_error) {
error_.append(file_name_)
.append(" ")
.append(std::to_string(reader_.line_number_))
.append(": ")
.append(reader_.converter_.error_msg())
.append(": \"")
.append(reader_.buffer_)
.append("\"");
throw_if_throw_on_error<throw_on_error>(error_);
} else {
error_ = true;
}
}
void set_error_header_ignored() {
if constexpr (string_error) {
error_.append(file_name_)
.append(": \"")
.append("the header row is ignored within the setup, it cannot "
"be used")
.append("\"");
throw_if_throw_on_error<throw_on_error>(error_);
} else {
error_ = true;
}
}
void set_error_invalid_field(const std::string& field) {
if constexpr (string_error) {
error_.append(file_name_)
.append(": header does not contain given field: ")
.append(field);
throw_if_throw_on_error<throw_on_error>(error_);
} else {
error_ = true;
}
}
void set_error_field_used_multiple_times(const std::string& field) {
if constexpr (string_error) {
error_.append(file_name_)
.append(": given field used multiple times: ")
.append(field);
throw_if_throw_on_error<throw_on_error>(error_);
} else {
error_ = true;
}
}
////////////////
// line reading
////////////////
void read_line() {
eof_ = !reader_.read_next();
}
struct reader {
reader(const std::string& file_name_, const std::string& delim)
: delim_{delim}, file_{fopen(file_name_.c_str(), "rb")} {
}
reader(reader&& other)
: buffer_{other.buffer_},
next_line_buffer_{other.next_line_buffer_},
helper_buffer_{other.helper_buffer_}, converter_{std::move(
other.converter_)},
next_line_converter_{std::move(other.next_line_converter_)},
size_{other.size_}, next_line_size_{other.next_line_size_},
helper_size_{other.helper_size_}, delim_{std::move(other.delim_)},
file_{other.file_}, crlf_{other.crlf_}, line_number_{
other.line_number_} {
other.buffer_ = nullptr;
other.next_line_buffer_ = nullptr;
other.helper_buffer_ = nullptr;
other.file_ = nullptr;
}
reader& operator=(reader&& other) {
if (this != &other) {
buffer_ = other.buffer_;
next_line_buffer_ = other.next_line_buffer_;
helper_buffer_ = other.helper_buffer_;
converter_ = std::move(other.converter_);
next_line_converter_ = std::move(other.next_line_converter_);
size_ = other.size_;
next_line_size_ = other.next_line_size_;
helper_size_ = other.helper_size_;
delim_ = std::move(other.delim_);
file_ = other.file_;
crlf_ = other.crlf_;
line_number_ = other.line_number_;
other.buffer_ = nullptr;
other.next_line_buffer_ = nullptr;
other.helper_buffer_ = nullptr;
other.file_ = nullptr;
}
return *this;
}
~reader() {
free(buffer_);
free(next_line_buffer_);
free(helper_buffer_);
if (file_) {
fclose(file_);
}
}
reader() = delete;
reader(const reader& other) = delete;
reader& operator=(const reader& other) = delete;
bool read_next() {
ssize_t ssize;
size_t size = 0;
while (size == 0) {
++line_number_;
if (next_line_size_ > 0) {
next_line_buffer_[0] = '\0';
}
ssize = get_line(&next_line_buffer_, &next_line_size_, file_);
if (ssize == -1) {
return false;
}
size = remove_eol(next_line_buffer_, ssize);
if constexpr (!ignore_empty) {
break;
}
}
size_t limit = 0;
if constexpr (escaped_multiline_enabled) {
while (escaped_eol(size)) {
if (multiline_limit_reached(limit)) {
return true;
}
if (!append_next_line_to_buffer(next_line_buffer_, size)) {
remove_eol(next_line_buffer_, ssize);
next_line_converter_.set_error_unterminated_escape();
return true;
}
}
}
next_line_converter_.split(next_line_buffer_, delim_);
if constexpr (quoted_multiline_enabled) {
while (unterminated_quote()) {
if (multiline_limit_reached(limit)) {
return true;
}
if (!append_next_line_to_buffer(next_line_buffer_, size)) {
remove_eol(next_line_buffer_, ssize);
return true;
}
if constexpr (escaped_multiline_enabled) {
while (escaped_eol(size)) {
if (multiline_limit_reached(limit)) {
return true;
}
if (!append_next_line_to_buffer(next_line_buffer_,
size)) {
remove_eol(next_line_buffer_, ssize);
next_line_converter_
.set_error_unterminated_escape();
return true;
}
}
}
next_line_converter_.resplit(next_line_buffer_, size);
}
}
return true;
}
void update() {
std::swap(buffer_, next_line_buffer_);
std::swap(size_, next_line_size_);
std::swap(converter_, next_line_converter_);
}
bool multiline_limit_reached(size_t& limit) {
if constexpr (multiline::size > 0) {
if (limit++ >= multiline::size) {
next_line_converter_.set_error_multiline_limit_reached();
return true;
}
}
return false;
}
bool escaped_eol(size_t size) {
const char* curr;
for (curr = next_line_buffer_ + size - 1;
curr >= next_line_buffer_ &&
setup<Options...>::escape::match(*curr);
--curr) {
}
return (next_line_buffer_ - curr + size) % 2 == 0;
}
bool unterminated_quote() {
if (next_line_converter_.unterminated_quote()) {
return true;
}
return false;
}
void undo_remove_eol(char* buffer, size_t& string_end) {
if (next_line_converter_.unterminated_quote()) {
string_end -= next_line_converter_.size_shifted();
}
if (crlf_) {
std::copy_n("\r\n\0", 3, buffer + string_end);
string_end += 2;
} else {
std::copy_n("\n\0", 2, buffer + string_end);
string_end += 1;
}
}
size_t remove_eol(char*& buffer, size_t size) {
size_t new_size = size - 1;
if (size >= 2 && buffer[size - 2] == '\r') {
crlf_ = true;
new_size--;
} else {
crlf_ = false;
}
buffer[new_size] = '\0';
return new_size;
}
void realloc_concat(char*& first, size_t& first_size,
const char* const second, size_t second_size) {
next_line_size_ = first_size + second_size + 3;
first = static_cast<char*>(
realloc(static_cast<void*>(first), next_line_size_));
std::copy_n(second, second_size + 1, first + first_size);
first_size += second_size;
}
bool append_next_line_to_buffer(char*& buffer, size_t& size) {
undo_remove_eol(buffer, size);
ssize_t next_ssize =
get_line(&helper_buffer_, &helper_size_, file_);
if (next_ssize == -1) {
return false;
}
++line_number_;
size_t next_size = remove_eol(helper_buffer_, next_ssize);
realloc_concat(buffer, size, helper_buffer_, next_size);
return true;
}
std::vector<std::string> get_next_row() const {
std::vector<std::string> next_row;
auto& next_row_raw = next_line_converter_.splitter_.split_data_;
for (const auto& [begin, end] : next_row_raw) {
next_row.emplace_back(begin, end);
}
return next_row;
}
////////////////
// members
////////////////
char* buffer_{nullptr};
char* next_line_buffer_{nullptr};
char* helper_buffer_{nullptr};
converter<Options...> converter_;
converter<Options...> next_line_converter_;
size_t size_{0};
size_t next_line_size_{0};
size_t helper_size_{0};
std::string delim_;
FILE* file_{nullptr};
bool crlf_;
size_t line_number_{0};
};
////////////////
// members
////////////////
std::string file_name_;
error_type error_{};
reader reader_;
std::vector<std::string> header_;
bool eof_{false};
};
} /* ss */