add lt gt lte gte restrictions, update unit tests, update documentation

This commit is contained in:
ado 2021-01-03 15:38:07 +01:00
parent cc7e6f7806
commit fdae9b6413
3 changed files with 155 additions and 33 deletions

View File

@ -76,23 +76,6 @@ $ make test
# Usage
## Error handling
Detailed error messages can be accessed via the **error_msg** method, and to
enable them the error mode has to be changed to **error_mode::error_string** using
the **set_error_mode** method:
```cpp
void parser::set_error_mode(ss::error_mode);
const std::string& parser::error_msg();
bool parser::valid();
bool parser::eof();
```
Error messages can always be disabled by setting the error mode to
**error_mode::error_bool**. An error can be detected using the **valid** method which
would return **false** if the file could not be opened, or if the conversion
could not be made (invalid types, invalid number of columns, ...).
The **eof** method can be used to detect if the end of the file was reached.
## Conversions
The above example will be used to show some of the features of the library.
As seen above, the **get_next** method returns a tuple of objects specified
@ -212,7 +195,7 @@ auto [name, age, grade] =
```
If the restrictions are not met, the conversion will fail.
Other predefined restrictions are **ss::ax** (all except), **ss::nx** (none except)
and **ss::oor** (out of range):
and **ss::oor** (out of range), ss::lt (less than), ...(see *restrictions.hpp*):
```cpp
// all ints exept 10 and 20
ss::ax<int, 10, 20>
@ -246,7 +229,7 @@ auto [name, age] = p.get_next<std::string, even<int>, void>();
```
## Custom conversions
Custom types can be used when converting values. An override of the **ss::extract**
Custom types can be used when converting values. A specialization of the **ss::extract**
function needs to be made and you are good to go. Custom conversion for an enum
would look like this:
```cpp
@ -267,11 +250,28 @@ inline bool ss::extract(const char* begin, const char* end, shape& dst) {
return false;
}
```
The shape enum will be in an example below. The **inline** is there just to prevent
The shape enum will be used in an example below. The **inline** is there just to prevent
multiple definition errors. The function returns **true** if the conversion was
a success, and **false** otherwise. The function uses **const char*** begin and end
for performance reasons.
## Error handling
Detailed error messages can be accessed via the **error_msg** method, and to
enable them the error mode has to be changed to **error_mode::error_string** using
the **set_error_mode** method:
```cpp
void parser::set_error_mode(ss::error_mode);
const std::string& parser::error_msg();
bool parser::valid();
bool parser::eof();
```
Error messages can always be disabled by setting the error mode to
**error_mode::error_bool**. An error can be detected using the **valid** method which
would return **false** if the file could not be opened, or if the conversion
could not be made (invalid types, invalid number of columns, ...).
The **eof** method can be used to detect if the end of the file was reached.
## Substitute conversions
The parser can also be used to effectively parse files whose rows are not
@ -298,11 +298,12 @@ if (!p.valid()) {
std::vector<std::pair<shape, double>> shapes;
while (!p.eof()) {
using ss::nx;
// non negative double
using udbl = ss::gte<double, 0>;
auto [circle_or_square, rectangle, triangle] =
p.try_next<nx<shape, shape::circle, shape::square>, double>()
.or_else<nx<shape, shape::rectangle>, double, double>()
.or_else<nx<shape, shape::triangle>, double, double, double>()
p.try_next<ss::nx<shape, shape::circle, shape::square>, udbl>()
.or_else<ss::nx<shape, shape::rectangle>, udbl, udbl>()
.or_else<ss::nx<shape, shape::triangle>, udbl, udbl, udbl>()
.values();
if (circle_or_square) {
@ -319,10 +320,46 @@ while (!p.eof()) {
if (triangle) {
auto& [s, a, b, c] = triangle.value();
double sh = (a + b + c) / 2;
shapes.emplace_back(s, sqrt(sh * (sh - a) * (sh - b) * (sh - c)));
if (sh >= a && sh >= b && sh >= c) {
double area = sqrt(sh * (sh - a) * (sh - b) * (sh - c));
shapes.emplace_back(s, area);
}
}
}
/* do something with the stored shapes */
/* ... */
```
It is quite hard to make an error this way since most things will be checked
at compile time.
The **try_next** method works in a similar way as **get_next** but returns a **composit**
which holds a **tuple** with an **optional** to the **tuple** returned by **get_next**.
This **composite** has a **or_else** method (looks a bit like tl::expected) which
is able to try additional conversions if the previous failed.
It also returns a **composite**, but in its tuple is the **optional** to the **tuple**
of the previous conversions and an **optional** to the **tuple** to the new conversion.
To fetch the **tuple** from the **composite** the **values** method is used.
The value of the above used conversion would look something like this
(with the restrictions applied to the values of shape - ss::nx)
```cpp
std::tuple<
std::optional<std::tuple<shape, double>>,
std::optional<std::tuple<shape, double, double>>,
std::optional<std::tuple<shape, double, double, double>>
>
```
Similar to the way that **get_next** has a **get_object** alternative, **try_next** has a **try_object**
alternative, and **or_else** has a **or_object** alternative. Also all rules applied
to **get_next** also work with **try_next** , **or_else**, and all the other **composite** conversions.
Each of those **composite** conversions can accept a lambda (or anything callable) as
an argument and invoke it in case of a valid conversion. That lambda
itself need not have any arguments, but if they do, they must either
accept the whole **tuple**/object as one argument or the elements of the tuple
separately. If the lambda returns something that can be interpreted as **false**,
The conversion will fail, and the next conversion will try to apply.
Rewriting the whole while loop using lambdas would look like this:

View File

@ -52,6 +52,41 @@ public:
}
};
////////////////
// greater than or equal to
// greater than
// less than
// less than or equal to
////////////////
template <typename T, auto N>
struct gt {
bool ss_valid(const T& value) const {
return value > N;
}
};
template <typename T, auto N>
struct gte {
bool ss_valid(const T& value) const {
return value >= N;
}
};
template <typename T, auto N>
struct lt {
bool ss_valid(const T& value) const {
return value < N;
}
};
template <typename T, auto N>
struct lte {
bool ss_valid(const T& value) const {
return value <= N;
}
};
////////////////
// in range
////////////////
@ -61,10 +96,6 @@ struct ir {
bool ss_valid(const T& value) const {
return value >= Min && value <= Max;
}
const char* error() const {
return "out of range";
}
};
////////////////
@ -76,10 +107,6 @@ struct oor {
bool ss_valid(const T& value) const {
return value < Min || value > Max;
}
const char* error() const {
return "in restricted range";
}
};
////////////////

View File

@ -323,6 +323,64 @@ TEST_CASE("testing ss:ne restriction (not empty)") {
}
}
TEST_CASE("testing ss:lt ss::lte ss::gt ss::gte restriction (in range)") {
ss::converter c;
c.convert<ss::lt<int, 3>>("3");
REQUIRE(!c.valid());
c.convert<ss::lt<int, 2>>("3");
REQUIRE(!c.valid());
c.convert<ss::gt<int, 3>>("3");
REQUIRE(!c.valid());
c.convert<ss::gt<int, 4>>("3");
REQUIRE(!c.valid());
c.convert<ss::lte<int, 2>>("3");
REQUIRE(!c.valid());
c.convert<ss::gte<int, 4>>("3");
REQUIRE(!c.valid());
{
auto tup = c.convert<ss::lt<int, 4>>("3");
REQUIRE(c.valid());
CHECK(tup == 3);
}
{
auto tup = c.convert<ss::gt<int, 2>>("3");
REQUIRE(c.valid());
CHECK(tup == 3);
}
{
auto tup = c.convert<ss::lte<int, 4>>("3");
REQUIRE(c.valid());
CHECK(tup == 3);
}
{
auto tup = c.convert<ss::lte<int, 3>>("3");
REQUIRE(c.valid());
CHECK(tup == 3);
}
{
auto tup = c.convert<ss::gte<int, 2>>("3");
REQUIRE(c.valid());
CHECK(tup == 3);
}
{
auto tup = c.convert<ss::gte<int, 3>>("3");
REQUIRE(c.valid());
CHECK(tup == 3);
}
}
TEST_CASE("testing error mode") {
ss::converter c;